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Abstract— The accurate simulation and prediction of human
behavior is critical in many transportation applications, includ-
ing safety and energy management systems. Construction of
human driving models by hand is time-consuming and error-
prone, and small modeling inaccuracies can have a significant
impact on the estimated performance of a candidate system.
This paper presents a comparative evaluation of several proba-
bilistic microscopic human behavior models from the literature
trained on naturalistic data for free-flow, car following, and lane
change context-classes on highways. We propose several metrics
to quantify model quality and use these metrics to demonstrate
that a new class of Bayesian network models outperforms the
state of the art.

I. INTRODUCTION

Advanced active safety systems such as autonomous ve-
hicles require new certification methods to determine their
safety and performance over the full range of driving envi-
ronments and traffic scenarios. The validation of a safety
system often requires real-world driving tests, which are
expensive, time consuming, and subject to safety constraints.
Simulation, on the other hand, can significantly reduce cost,
safety risk, and evaluation time, but requires the develop-
ment of statistical models and principled methods that can
accurately quantify performance.

Recent research has sought a unified statistical framework
for constructing driver behavior models through machine
learning on real-world data [1]–[5]. These models assume
very little about the underlying form of the distribution and
rely on large datasets to fit parametric distributions. Auto-
mated training of general models promises more accurate
microscopic driver interactions and models that can extend
across driving contexts and geographic locations.

This paper examines several recent models for human
driving behavior and compares their performance in free-
flow, car following, and lane change contexts on high-
ways. Probabilistic microscopic driving models are reviewed
in Section II, and several models from the literature are
formulated under a common framework in Section III. A set
of proposed validation metrics for probabilistic microscopic
driving models are outlined in Section IV, which are com-
pared in a series of experiments in Section VI. All associated
software is publicly available to support automotive safety
system development and analysis.
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II. PROBABILISTIC MICROSCOPIC DRIVING MODELS

Probabilistic microscopic driving models capture the in-
teractive behavior between a vehicle and the local traffic
context. They are critical components of traffic simulation
models, and model variations can significantly impact the
evaluation of system performance.

Let a scene st define the joint configuration of vehicles
on a roadway at a particular time t and any past information
necessary to leverage the first-order Markov assumption.
A probabilistic microscopic driving model is a conditional
distribution of the form p(a

(i)
t | st), where a(i) is the

action taken by the ith vehicle at time t. Sampling from
the conditional distribution for each traffic participant and
propagating each vehicle over a small time-step using a
dynamics model leads to probabilistically valid successor
scenes. The probabilistic microscopic driving models in this
work leverage contextual information in the form of features
to make their predictions. The models are reformulated as
p(a

(i)
t | φ(i, st)), where φ(i, st) extracts contextual features

f ∈ Rm for the ith vehicle in scene st. Specific features and
the action space are discussed in Section V.

An ideal driving model produces a realistic action dis-
tribution for any possible traffic scenario. Accomplishing
this with a single model is difficult. Behaviors in different
context classes are best described using different indicator
features. Different models have traditionally been developed
for different context classes [6]–[9]. We follow this approach
and use a general framework that can fit any context class
covered by the data set.

We restrict our focus to three scenarios that are particularly
important for driving applications: free-flow, where the vehi-
cle may drive unimpeded in its lane at its desired speed; car
following, where the vehicle follows its lane while keeping
pace with another vehicle; and lane change, where the vehicle
selects and moves into another lane. Vehicle behaviors are
identified at each time step so the appropriate model can be
applied. Context class definitions are given in Table I and
are defined to be mutually exclusive.

TABLE I: Context class definitions

Context Class Description

free-flow the front time gap is ≥ 2s
and not in lane-change

car following the front time gap is < 2s
and not in lane-change

lane change continuous sets of frames up to ±2s for which
the absolute lateral velocity is > 0.1m/s and
a lane centerline switch occurs



st

f
(1)
t c

(1)
t a

(1)
t

...

f
(n)
t c

(n)
t a

(n)
t

st+1

Fig. 1: Scene propagation using probabilistic microscopic driving
models. For each vehicle in scene st, extract features f

(i)
t , identify

context class c
(i)
t , and sample action a

(i)
t . Propagate all vehicles to

obtain scene st+1.

Once a model is constructed, it may be sampled as many
times as necessary for analysis. Contextual features ft are
extracted relative to each vehicle and are used to determine
each vehicle’s current context class ct. Each context class
has an associated action model. An action for each vehicle
is sampled from the action model’s distribution conditioned
on the contextual features. These actions are used with a
dynamics model to propagate each vehicle. Figure 1 outlines
this scene propagation process.

III. MODELS

This section details the probabilistic microscopic driving
models whose performance is compared in Section VI.
The source code contains all details regarding model train-
ing and implementation. Note that in subsequent models
p(a

(i)
t | st) = p(a

(i)
t | φ(i, st)) is written p(a | f) for brevity.

Context Classifier to Static Gaussian (SG)

An early example of a probabilistic microscopic driving
model comes from Agamennoni, Nieto, and Nebot, who
develop a classifier to identify scene context [1]. Each
context class is tied to a Gaussian acceleration distribution:

p(a | c) = N (µc,Σc), (1)

where c is a context class such as free-flow or car following.
In our work, context classification is provided, so the

softmax model is equivalent to a static Gaussian (SG) distri-
bution. Static Gaussian distributions were fit using maximum
likelihood.

Linear Gaussian Regressor on Single Feature (LG)

A baseline model is included to capture the performance
gained over the Static Gaussian model when using a single
predictor. The Linear Gaussian (LG) model is an autoregres-
sor on a single predictor with Gaussian error:

p(a | f) =

{
N (w · f + b, σ) for f not missing
N (µ, σ) otherwise

(2)

where the autoregression terms are solved using ridge re-
gression [10]. During training, all possible single-variable
models are constructed and the one minimizing residual loss
is selected. A separate mean is computed for cases where
the predictor is missing.

Random Forest (RF)

A random forest is an ensemble of decision trees trained
to minimize residual error [11]. Gindele, Brechtel, and Dill-
mann used random forests (RF) to model driver behavior [3].
The conditional distribution is realized by traversing the split
decisions along the tree until reaching a leaf node. Each leaf
contains a set of observations that are used to create a sample
mean and covariance. The values from all active leaves are
averaged when making a prediction.

The resulting RF model is a Gaussian distribution over
acceleration and turn-rate, where the mean and covariance
functions are each random forests over contextual features:

p (a | f) = N (µ ∼ FOREST (f) , Σ ∼ FOREST (f)) . (3)

Dynamic Forest (DF)

The Dynamic Forest (DF) model trains an ensemble of
autoregressive trees and was originally used for human
motion prediction [4]. This model uses a single forest,
whereas the RF model has separate forests for the action
mean and covariance. The conditional distribution is obtained
by traversing each tree to obtain the active leaves, and then
creating a mixture model across the active leaves.

Each leaf contains a multivariate Gaussian distribution
with a linearly regressed mean, µ = W · fl, and a fixed
covariance matrix fitted to the leaf’s training samples, where
fl is the leaf’s subset of observed features. The regression
matrix is estimated using ridge regression [10] and the
covariance matrices are approximated by sample covariances.

Mixture Regression (MR)

Mixture regression was used by Lefèvre, Sun, Bajcsy, et
al. to develop a probability distribution over acceleration [2].
Their work used a history over headway, speed, relative
speed, and acceleration to produce a maximum likelihood
acceleration estimates. The model was used for model-
predictive control and has been shown to work well in
simulation and in real-world drive tests.

We apply their work to driving with acceleration and
turnrate, where the MR model is a Gaussian mixture over
the joint space of the target and predictor variables, trained
using expectation maximization [12]. The conditional action
distribution is the weighted combination of the conditional
Gaussian components:

p(a | f) =
k∑

i=1

βi (f) · N
(
µa|f | Σa|f

)
,

where βi (f) is the probability of the observed features
belonging to the ith Gaussian. Greedy feature selection is
used during training to select a subset of predictors up to
a maximum feature count threshold while minimizing the
Bayesian information criterion [13].
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Fig. 2: Bayesian network model structure for probabilistic micro-
scopic driving models with features f1:m and actions a1:2.

Discrete Bayesian Network (DB)

Bayesian networks over discrete and discretized variables
have also been used as probabilistic driver models [5]. A
Bayesian network is a directed acyclic graph whose nodes
are random variables and whose edges represent conditional
dependence relations. Associated with each node is a condi-
tional probability distribution (CPD) for the node’s variable
given the values of its parents in the network.

Discretization allows the model to match arbitrarily com-
plex distributions with a sufficient number of intervals and
allows for efficient structure learning using existing soft-
ware packages. Predictors with missing values are naturally
encoded as additional discrete states, and truncated values,
whose infinitely-dense concentration at the truncation thresh-
old can cause issues for Gaussian fitting, are naturally folded
into the nearest interval. Naturally discrete variables were
modeled using multinomial distributions. Continuous and hy-
brid variables were discretized into multinomial distributions
over piecewise-uniform intervals.

Feature selection for the Discrete Bayesian model is con-
ducted as part of the structure learning process [5]. General
Bayesian network structure learning requires searching the
full space of directed acyclic graphs [14]. Here the structures
can be constrained to a two-layer form as shown in Fig. 2, for
the features are observed, significantly reducing the search
space. A graph-search algorithm with random initialization is
used to traverse the search space over candidate predictors to
find the structure with maximum likelihood [15]. We used
the K2 parameter prior which assigns a baseline uniform
distribution over conditional probability table statistics [14].
Only predictors that are parents of a target variable are
retained.

Conditional Linear Gaussian Bayesian Network (LB)

A new model based on Bayesian networks was tested
to avoid some of the limitations with using a piecewise-
uniform representation. Conditional linear Gaussian distri-
butions were used in each node:

p (x | pa(x)) =


N

(
wT

1 pac(x) + b1, σ1

)
for pa

(1)
d (x)

N
(
wT

2 pac(x) + b2, σ2

)
for pa

(2)
d (x)

...

(4)

where pa
(i)
d (x) is the ith instantiation of the discrete parents

of variable x and pac(x) is the vector of assignments to
the continuous parents. Conditional Gaussian distributions

often require fewer parameters than piecewise-uniform dis-
tributions, do not need to discretize naturally continuous
variables, take advantage of naturally discrete variables, and
can tightly regress to a continuous target. Variables that
can be missing can be handled as hybrids, acting both as
binary discrete variables indicating whether the variable was
observed, and if it was, as a continuous variable in that
branch’s linear Gaussian. The conditional linear Gaussian
is limited to producing a single-Gaussian component predic-
tion. A graph-search algorithm with random initialization is
used to traverse the search space over candidate predictors
to find the model that maximizes the Bayesian information
criterion [13].

IV. VALIDATION METRICS

One must have confidence in the accuracy of a proba-
bilistic microscopic driving model before deployment. This
section proposes several validation metrics for probabilistic
microscopic driving models that can be used to compare their
ability to capture the behavior of human drivers.

A. Cross-Validated Likelihood

The first metric is the cross-validated likelihood of with-
held data given the learned model. The cross-validated like-
lihood serves as the core performance metric in maximum
likelihood model selection [12], assessing the model’s ability
to generalize across datasets. A good model will have a high
cross-validated likelihood and will generally also have a high
training likelihood.

B. Root-Weighted Square Error

The second validation metric, the root-weighted square
error (RWSE), captures the deviation of a model’s probability
mass from real-world trajectories [16]. While the cross-
validated likelihood measures the immediate probability of
successor frames, the RWSE measures the expected square
deviation of particular variables in successor traces, thereby
assessing the probabilistic microscopic driving model’s abil-
ity to act over longer time scales and with evolving traffic
scenes. The RWSE is a natural extension to the root-mean
square error, which is the mean deviation of a predicted
trajectory from real-world examples. The models devel-
oped in this paper are distributions rather than maximum
likelihood predictors, and it is important that the overall
probability mass correctly reflect the true distribution over
agents’ actions. The RWSE for m trajectories for a predicted
variable v at horizon H is:

RWSEH =

√√√√ 1

m

m∑
i=1

∫
v

p(v) ·
(
v
(i)
H − v

)2

dv, (5)

where v
(i)
t is the true value in the ith trajectory at time t

and p(v) is the modeled probability density. Because the
integral is difficult to evaluate directly, we used Monte Carlo
integration [17] with n = 50 simulated traces per true
trajectory:



RWSEH =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(
v
(i)
H − v̂

(i,j)
H

)2

, (6)

where v̂(i,j)H is the simulated variable under sample j for the
ith trajectory at horizon H .

C. Emergent Variables and Smoothness

The final validation metric concerns the emergent behavior
of the vehicles under a particular model. Likelihood alone
is insufficient to capture the performance of a stochastic
process. The probabilistic microscopic driving model must
produce vehicle traces and overall driving behavior that is
comparable to real-world driving. An emergent variable is
a value extracted from a trace that is not explicitly fitted
in the modeling process, such as collision frequencies and
traffic flow rates. A distribution over emergent variables can
be produced by simulation and compared to the distribution
extracted from real world data. Matching distributions sug-
gest model accuracy [18].

One such emergent variable is the comfort or smoothness
of simulated trajectories, often described by the derivative
of acceleration: jerk(t) = jt = ȧt [19]. Humans tend to
drive smoothly, so accurate driving models should produce
similarly smooth trajectories. We use the sum of the square
jerk over the trajectory,

∑
t j

2
t . This is commonly used in the

cost function for optimal trajectory generation in autonomous
driving [19], [20]. Similarity to real-world driving can be
objectively measured using the Kullback-Leibler divergence
between the empirical distributions over the simulated and
real-world trajectories [21]. We compute the divergence
using piecewise-uniform distributions.

V. DATASET AND FEATURES

Models were constructed and evaluated using two hours
of naturalistic highway driving data collected in the United
States. The same dataset and the same preprocessing were
used in a previous study [5]. All processing details are
available in the source code, see Section VII.

A. Indicator Features

A set of candidate features was extracted for the ego-
vehicle from lane-relative tracks. The set includes core fea-
tures from ego dynamics, roadway features, relative features
between vehicles, past states, and aggregate features over
a vehicle’s history. Core features describe the current state
of the ego vehicle, including such features as velocity and
turn-rate. Roadway features are measured with respect to the
nearest center lane and require knowledge of the surrounding
roadway structure. Relative features between vehicles include
time and distance headways and other relative measurements
required for interactive traffic prediction. Features dependent
on past actions are included as well, and require that one
record these values when propagating a vehicle in simulation.
Aggregate features include the standard deviations, minima,
and maxima for acceleration and turn-rate over a brief
history.

This set of candidate features reflects those used in the
driving literature for intention estimation [3], [22], [23]. For
a complete list of candidate features and their definitions, see
github.com/sisl/2016 itsc probdrive.

B. Actions

Vehicle actions are the acceleration (at+1) and turn-rate
(ψ̇t+1) over the next quarter-second time step corresponding
to the traditional throttle/brake and steering wheel driving
inputs. The mean acceleration over the following quarter-
second horizon was extracted using the velocity difference,
at+1 = (vt+1 − vt)/∆T .

Trajectories propagated directly with turn-rate exhib-
ited high sensitivity when traveling at highway speeds,
as small perturbations can lead to large lateral deviations.
Performance improved by propagating vehicles using a
turn-rate computed from a desired lane-relative heading,
ψ̇t+1 = ψdes − ψ, where a desired lane-relative heading ψdes
of zero causes the vehicle to drive parallel to the nearest
centerline. The final target variables are the future accel-
eration at+1 and the constant desired lane-relative heading
over the next time-step ψdes extracted by solving the dif-
ferential equation of motion assuming a constant turn-rate,
ψdes =

(
ψt+1 − ψte

−∆T
)
/
(
1− e−∆T

)
.

C. Truncated and Missing Features

Indicator features may be truncated or missing. A feature
is truncated if it falls outside of an observable range and its
value is clamped to the observation boundary. An example is
distance to the lead vehicle, which is limited by the sensing
range of the ego vehicle. Truncated features need to be
handled carefully because of the repeated samples at the
boundary. Some learning algorithms, such as decision trees,
are robust to truncated features. Other learning algorithms
must enforce smoothness constraints on the fitted distribu-
tions to prevent spikes at the observation boundaries or resort
to expensive imputation.

Missing features also pose problems during the machine
learning process. A feature is missing if it can be unobserved,
either randomly or otherwise. An example is the velocity of
the lead vehicle, which is unobserved when the lead vehicle
is not present. Missing features are often set to average values
or imputed in order to produce a fully continuous variable,
and a second dummy feature is often included that indicates
whether the feature was missing or not [12]. Setting the miss-
ing value to an average can lead to concentrated probability
densities, data imputation is computationally expensive, and
dummy features increase the feature space. The DB model
includes missing and truncated values as additional discrete
states and the LB model treats missing values as discrete-
continuous hybrids to avoid these issues.

VI. EXPERIMENTS

Model validation was conducted for lane change, free-
flow, and car following. Each candidate model was trained
using five-fold cross validation on the training set and then
validated on the test set.
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prediction horizon on the car following dataset.

A. Context Classes

The results across context classes are summarized in
Table II. The conditional linear Bayesian network has the
highest performance in speed RWSE, headway RWSE, and
smoothness. The mixture regression model has higher test
likelihood, which emphasizes that likelihood only captures
one-step predictions, and cannot measure a model’s accu-
mulated propagation error. The mixture regression model
slightly outperforms in lane offset RWSE.

The performance of the linear Gaussian model is sur-
prising. As a simple model it is less susceptible to be-
ing propagated to a state for which training data was not
available. The random forest model hardly outperforms the
static Gaussian and the discrete Bayesian network has poor
emergent properties, particularly for lane following.

B. Car Following

This section analyses model performance on the car fol-
lowing dataset. Figure 3 shows the log likelihood score
for training and test for each candidate model, along with
variations obtained from cross validation. Figure 4 shows
the root-weighted square error versus prediction horizon.

free-flow car following lane change
0

2

4

6

su
m

sq
ua

re
je

rk
K

L
di

ve
rg

en
ce

(m
2 /s

6 )

SG

LG

RF

DF

MR

DB

LB

Fig. 5: The Kullback-Leibler divergence scores for sum square jerk. Error
bars indicate maximum and minimum observed values over five folds. Lower
values indicated a closer match to the withheld data.

Figure 5 compares the smoothness metric for all context
classes.

The RWSE for speed and headway distance show sig-
nificant variation in model performance, and the LB model
accumulates the least error. Models perform roughly as well
in speed as they do in headway distance. All models but
the DB perform equally well on lane offset. The DB model
cannot regress to the tight lateral actions necessary to stay
oriented along the lane.

There is considerable variation between models in emer-
gent smoothness. The SG, RF, and DB models produce non-
smooth trajectories to such an extent so as to saturate the
KL-divergence. The remaining models produce trajectories
with similar smoothness to the real-world dataset. The LB
model has the closest match across all context classes.

C. Important Features

Insight into what sort of information the models are using
can be gained by looking at the features selected by each
model during the training process. The top five important
features, in the percentage of times chosen, were the current
acceleration, the previous acceleration, the current turnrate,
the previous lane-centerline offset, and the current speed. The
relative velocity to the lead vehicle played an important role
in car following models, whereas past desired angle, past
turnrate, and mean desired angle over the last few frames
played an important role in lane change models.

The single-feature linear Gaussian classifier always chose
the current acceleration, as it has extremely high correlation
with the next acceleration. The mixture regression and linear
Bayesian network models chose similar features, though the
latter also chose discrete or potentially missing features such
as the number of lanes to the right. The discrete Bayesian
network fluctuates the most across folds, and suggests that its
optimal feature selection may be too aggressive. All models
performed best when the maximum number of chosen fea-
tures were limited, preventing overfitting.

VII. CONCLUSIONS

This paper conducted a qualitative and quantitative com-
parison of methods for learning human behavior models



TABLE II: Validation experiment results across context class. The best metric scores are bold.

Context Static Gaussian Linear Gaussian Random Forest Dynamic Forest Mixture Regression Discrete Bayesian Linear Bayesian

log-likelihood (test) free-flow 3.40 5.58 3.51 6.51 7.76 4.26 7.53
car following 3.36 5.31 3.49 6.04 7.56 4.30 7.30
lane change 2.16 4.15 2.38 4.51 8.00 2.85 6.22

RWSE speed [m/s] free-flow 1.17 0.89 1.16 0.90 0.95 1.25 0.71
car following 1.01 0.95 1.00 0.91 0.84 0.95 0.71
lane change 1.28 1.18 1.30 1.15 1.14 1.39 0.84

RWSE headway [m] car following 2.36 1.63 2.31 1.57 1.62 1.96 1.02
RWSE lane offset [m] free-flow 2.29 2.29 2.29 2.29 2.28 9.58 2.30

car following 2.20 2.20 2.21 2.21 2.19 10.48 2.21
lane change 3.41 3.42 3.49 3.49 1.59 18.73 3.68

KLdiv sum square jerk free-flow 7.47 0.82 7.47 0.41 0.39 7.43 0.17
car following 6.41 1.10 6.41 0.60 0.39 6.20 0.20
lane change 5.37 1.89 5.29 1.36 0.82 5.34 0.40

from naturalistic driving data. These models were employed
in collision risk estimation, policy optimization, and lane
change prediction. Model parameters and structure were
inferred from naturalistic driving data. The methodology
presented in this paper was used to create a collection of
human behavior models for different context classes: free-
flow, car following, and lane change. All software is publicly
available at github.com/sisl/2016 itsc probdrive.

Probabilistic action models based on supervised learning
to obtain the relationship between states and human actions
is reaching its limit. While conceptually sound [24], small
inaccuracies of the learned model compound over time, and
can lead to situations not encountered during training [25].
Future work will investigate inverse reinforcement learning
and generative adversarial networks, which are two of the
most successful approaches to imitation learning. Contexts
can be generalized to capture other aspects such as driver
drowsiness or aggressiveness.
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