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Abstract— Automotive safety validation requires evaluation
on a statistically representative set of roadway configurations
and scene geometries. Scenes must be sampled from a statistical
model representative of what actually occurs on roadways.
This paper introduces a methodology for realistic scene model
construction based on factor graphs that can be applied to
arbitrary road geometries. Parameter learning for factor graphs
is known to be convex. Experiments show that the proposed
method is superior to the state of the art.

I. INTRODUCTION

Rigorous analysis of advanced driver assistance systems
is required before public release due to the potentially
catastrophic consequences of error in their operation. Trans-
portation authorities, such as the National Highway Traffic
Safety Administration (NHTSA) and the Federal Motor
Transport Authority, require a combination of drive tests and
detailed simulation studies to ensure system effectiveness
and safety [1]. A drive test can evaluate a system in actual
operation, but simulation studies are required to test the
robustness of the system over a significantly wider range of
situations. These situations, in turn, need to be generated by
a statistical model of scenes that are representative of what
actually occurs on the roadway. Sampling a large collection
of scenes from such a model and running them in simulation
both with and without a driver assistance system provides an
estimate of the differential in performance and safety.

Sampling scenes by simulating traffic over a burn-in period
does not guarantee appropriate roadway population and vehi-
cle characteristics. It is important that the scene geometries
and inter-vehicle relations represented by the model be as
representative of actual driving as possible; otherwise, the
risk associated with an advanced driver assistance system
could be significantly over- or underestimated. To ensure a
representative model, a large collection of recorded driving
data is typically used to extract probabilities over various
encounter variables. This statistical method of safety system
evaluation has been used successfully in other fields, includ-
ing civil aviation [2], [3].

The automotive industry has traditionally tested on a re-
stricted set of pre-selected scenarios or has sampled directly
from or directly replayed recorded driving data [4], [5]
A statistical method was recently introduced for learning
automotive scene models from data [6]. This model used
a Bayesian network to represent relationships between vehi-
cles and sampled from conditional distributions to generate
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Fig. 1: An example scene on an arbitrary road network.

scenes. Models were constrained to a particular roadway
geometry and did not consider interactions between lanes.

The scene models described in this paper extend these
prior methods in several important ways. First, these models
allow for arbitrary roadway configurations. Second, these
models produce scenes that populate the roadway as it is
used in the real world. Third, use of a factor graph allows
for the seamless addition of variables to extend the model
and capture additional dependencies, and can be trained
within a principled statistical framework. Finally, the pro-
posed method is convex and training converges to the global
optimum.

II. SCENE DISTRIBUTION AS A FACTOR GRAPH

A scene s is an arrangement of vehicles on a given road
network. The ith vehicle is defined with a length, a width,
and a four-tuple ϑ(i) = 〈x, y, v, ψ〉 containing two position
coordinates, speed, and a lane-relative heading. Vehicles are
not constrained to lane centerlines.

A scene distribution p(s) is a probability distribution
over driving scenes. It is used to generate initial conditions
from which simulation evaluation can be conducted. By
running a large collection of scenarios sampled from the
scene distribution, one can measure the effectiveness of an
advanced driver assistance system.

A scene distribution model should allow for efficient
sampling of driving scenes representative of the real world.
Varying roadway compositions and traffic participant quan-
tities make it difficult to directly model such a probability
distribution.

This work uses a factor graph to represent the scene dis-
tribution. A factor graph is a bipartite graph representing the
factorization of an unweighted probability distribution [7]. A
factor φ over a set of random variables x1:N is a mapping
of those variables to a non-negative real value. The value
associated with a particular variable assignment denotes the
affinity to that assignment, with larger values indicating
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Fig. 2: An example scene graph. Circles represent factors over vehicle
parameters. The factor graph is the bipartite graph between the variables
defining each vehicle and the feature functions contained in each factor.

higher likelihood. A factor graph is evaluated by taking
the product over all factors and is normalized to obtain a
probability distribution:

p(x1:N ) =
1

Z
p̃(x1:N ) =

1

Z

∏
i

φi(xScope[φi]), (1)

where p̃ is the unnormalized measure, Z the normalization
constant, and Scope[φ] the variables included in φ.

Factor graphs allow for an intuitive description of proba-
bilistic interaction between variables. Individual factors can
be tuned according to domain knowledge. The normalization
constant, however, is often difficult or intractable to compute,
and requires exponential time in the number of variables [7].

Log-linear models are one common generalization of
parameterized factor graphs [7]. Given a set of features
F = {fi(x1:N )}Ki=1, where fi(x1:N ) is a feature function
defined over the factor graph variables, one has:

p(x1:N | θ) = 1

Z(θ)
exp

[
K∑
i=1

θifi(x1:N )

]
. (2)

The resulting representation is generic and can capture
distributions with global and local structure. Factor graphs
are useful for modeling distributions over scenes as they
can capture probabilistic interactions using a representative
set of factors. These factors represent interactions in vehicle
state, local context, lane relations, and interactions between
vehicles. A factor graph can be constructed for any scene
using representative factors in a way that correctly reflects
the roadway and vehicle configuration. The feature weights
θ have an intuitive effect on the distribution and can be fit
to real-world data.

Figure 2 shows a small example scene factor graph. We
include three types of factors: a lane-relation factor between
a vehicle and the road, which captures the effect of lane-
relative features on the vehicle’s state; a following factor
between a vehicle and its lead, which captures information
such as time headway; and a neighbor factor, which links
two neighboring vehicles between lanes. The factor graph
approach allows for arbitrary factors to be used; other factors
or variables can be included as needed.

A. Factor Graph Construction

To construct scene factor graphs, leading and trailing
vehicles were first identified for each vehicle in the scene.

Vehicles with both were considered active, and could vary
in subsequent scene sampling. Vehicles without leading or
training vehicles were held static in order to provide bounds
on longitudinal position for the active vehicles. A lane-
relation factor was assigned to each active vehicle and a
following factor was assigned to each lead-follow vehicle
pair. For each active vehicle, a neighbor factor was assigned
to the longitudinally closest vehicle in each neighboring lane,
both ahead and behind, up to a 33 m horizon.

Each factor follows the log-linear model, containing a
set of feature functions. The lane-relation factor is defined
over speed v, lane centerline lateral offset t, and lane-
relative heading φ. The following factor is defined over
the relative speed r and headway distance d. All variables
are standardized using the mean and variance across the
training data. The lane-relation and following factors are each
polynomials over their feature variables, with each possible
combination of intermediates up to degree 3. For example,

Ffollowing =
{
r, d, r2, d2, r3, d3, rd, r2d, rd2

}
(3)

The neighbor factor is defined using the time of closest
point of approach tCPA[s] and distance at closest point of
approach dCPA[m] assuming each vehicle maintains constant
heading and velocity, and takes into account each vehicle’s
bounding box. Five indicator functions are included:

Fneighbor =


1{ tCPA = 0 ∧ dCPA = 0 }
1{ 0 < tCPA ≤ 1 ∧ dCPA ≤ 1/2 }
1{ 1 < tCPA ≤ 4 ∧ dCPA ≤ 1/2 }
1{ 4 < tCPA ≤ 10 ∧ dCPA ≤ 1/2 }
1{10 < tCPA ∧ dCPA > 1/2 }

(4)

B. Scene Sampling

The Metropolis-Hastings algorithm can draw samples
from any probability distribution provided that probability
density can be evaluated up to a normalization constant [8].
A transition distribution, T (x → x′), which defines the
probability of transitioning from the present state to a suc-
cessor state, is used to feed a weighted random walk over
the problem domain. At every step of the walk, a proposal
transition x→ x′ is sampled from the transition distribution,
and the transition is accepted with probability:

A
(
x → x′) = min

[
1,

p̃(x′)T (x′ → x)

p̃(x)T (x → x′)

]
. (5)

This forms a Markov chain whose stationary distribution
is asymptotically equal to the distribution defined by the
Markov network [7].

The Metropolis-Hastings algorithm has the advantage of
working on unnormalized distributions, and so can use
the Markov network factors directly without computing the
normalization constant. A disadvantage is that the number of
burn-in samples required before convergence to the stationary
distribution may be large. Algorithm 1 shows the scene
sampling algorithm.



Algorithm 1 Scene Generation using Metropolis-Hastings
1: Given: transition distribution T
2: Sample scene s uniformly from a database of real-world scenes
3: for some number of burn-in steps do
4: Select an active vehicle ϑcurrent in s uniformly at random
5: ϑpropose ← ϑcurrent + SAMPLE(T )
6: if SAMPLE(U [0, 1]) < A(ϑcurrent → ϑpropose) then
7: ϑ← ϑpropose

8: return s

III. PARAMETER LEARNING

Parameters for the Markov network factors are learned
from real-world data using gradient ascent on the pseudolike-
lihood, an alternative optimization objective to the likelihood
that is commonly used in parameter learning for log-linear
models [7]. The likelihood of an assignment is given by
p(x1:N ) =

∏
j p(xj | x1:j−1), which is closely approx-

imated by the pseudolikelihood, PL(x1:N ) =
∏

j p(xj |
x−j), where x−j are all variables except xj . The log-
pseudolikelihood of a dataset with M samples is:

`PL(θ | D) =
1

M

∑
m

∑
j

ln p̃(x
(m)
j | x(m)

−j )

−M lnZPL(θ). (6)

It can be shown that the log-pseudolikelihood partition
function lnZPL(θ) is convex [7], which ensures that gradient
ascent converges to the global optimum.

The pseudolikelihood’s repeated evaluation of p̃(xj | x−j)
only requires integrating out a single variable:

p̃(xj | x−j) =
p̃(xj , x−j)∫

x′
j
p̃(x′

j , x−j) dx′
j

. (7)

We estimate the denominator with Monte Carlo integra-
tion [9]: ∫

x′
j

p̃(x′
j , x−j) dx

′
j ≈ 1

A
V
∑
i

p̃(x
(i)
j , x−j), (8)

where V =
∫
x′
j
dx′j and A samples of xj are uniformly

sampled within the variable’s domain.
The pseudolikelihood gradient is given by:

∇θi`PL(θ | D) =
∑

j:xj∈Scope[fi]

(
1

M

M∑
m=1

fi

(
x
(m)
j , x

(m)
−j

)
− E

xj∼p̃θ

(
·|x(m)

−j

) [
fi

(
xj , x

(m)
−j

)])
. (9)

The gradient is straightforward to compute, as each ex-
pectation term merely requires a summation over a single
random variable conditioned on all of its neighbors. We
use importance sampling [10] with a uniform distribution
to compute this efficiently:

Exj∼p̃θ(·|x−j)[f(xj , x−j)] ≈
∑

r f(x
(r)
j , x−j) ·Wr∑

r Wr
, (10)

where Wr = p̃θ(x
(r)
j , x−j)/U(x

(r)
j ) is the importance sam-

pling weight, R samples of xj are uniformly sampled within
the variable’s domain, and U(x

(r)
j ) is the probability density

for the uniform proposal distribution.

A. Variable Bounds

We must bound our variables in order to perform Monte
Carlo integration and importance sampling. Recall that vehi-
cles are defined according to ϑ = 〈x, y, θ, v〉 with position,
heading, and speed. Speed is bounded by the observed
extrema.

To bound the other variables, we change from the global
frame to a Frenet-Serret frame [11], where the lane offset is
bounded to the lane and the heading is bounded based on
the observed lane-relative headings. Thus only the location
along the lane remains unbounded.

This work enforces a bound on location along the lane
through the preceding and following vehicle. A vehicle’s
longitudinal position can only vary between the available
space it has on the road, imposed by the scene structure.

B. Varying Network Structure

In traditional undirected graphical model learning, the net-
work is assumed constant. In this problem, the scene struc-
ture will vary with the scene. This variability complicates
learning because the pseudolikelihood must be maximized
over different network topologies.

The pseudolikelihood for shared scene factors on a dataset
of M scenes is given by:

`PL(θ | D) =
1

M

M∑
m=1

∑
ϑ∈s(m)

∑
xj∈

{
ϑs,ϑt,ϑv,ϑφ

} ln p̃(xj | x−j) (11)

The pseudolikelihood gradient is given by:

∇θit
`PL(θ | D) =

∑
j:xt∈Scope[fit]

[
1

M

M∑
m=1

( ∑
φt ∈ s(m)

fit
(
x
(m)
j , x

(m)
−j

)

− E
xj∼p̃θ

(
·|x(m)

−j

) [
fit

(
xj , x

(m)
−j

)])]
(12)

where fit and θit are the ith feature and weight of the tth
shared factor, respectively.

C. Regularization

Despite a convex problem formulation, multiple solutions
can exist, such as equivalent solutions under parameter
scaling [7]. Regularization was employed to ensure well-
behaved convergence using a Gaussian prior over the log-
linear parameters θ. This regularization preserves convexity.

D. Batch Gradient Ascent

Vanilla gradient descent computes the gradient at each
step using all of the scenes in the training set. Faster
training time was achieved using batch gradient ascent with
momentum [12], which uses randomly sampled batches from
the full dataset to speed up gradient computation time, while
almost surely converging to the correct answer.
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Fig. 3: Data source schematics with scene sections. Each scene section is 91.4 m long.

IV. DATASET

This work used real-world driving data obtained from
the Next-Generation Simulation (NGSIM) US Highway 101
and Interstate 80 datasets [13], [14]. Each dataset consists
of 45 minutes of vehicle trajectory data collected using
synchronized digital video cameras providing the vehicle
lane positions and velocities at 10 Hz. The US Highway 101
dataset covers an area in Los Angeles, CA, approximately
640 m in length with five mainline lanes and a sixth auxiliary
lane providing highway entrance and exit. The Interstate
80 dataset covers an area in the San Francisco Bay Area
approximately 500 m in length with six mainline lanes,
including a high-occupancy vehicle lane and an onramp.
Figure 3 shows the roadways and the scene locations used
in our experiments. These datasets were collected by the
Next-Generation Simulation program in 2005 to facilitate
automotive research and are freely available.

Traffic density in the datasets transitions from uncongested
to full congestion and exhibits a high degree of vehicle in-
teraction as vehicles merge on and off the highway and must
navigate in the nearly-congested flow. This diversity and
the datasets’ complete scene description make these sources
particularly useful for learning traffic scene distributions.

The NGSIM datasets provide positions and velocities.
The trajectories were smoothed using an extended Kalman
filter [15] on a simple bicycle model and projected to lanes
using centerlines extracted from the NGSIM CAD files.

V. EXPERIMENTS

The experiments presented in this section use highway
scene models trained on the NGSIM dataset. The factor
graph model is compared to the ‘chain’ Bayesian network
model from prior work [6], which generates scenes from
scratch by using conditional distributions to successively
generate a lane of vehicles, one lane at a time. Though
identical scene regions are used in order to facilitate a
direct comparison, the factor graph model is not restricted to
straight highway segments.

A. Burn-in Tuning

An important step in model validation is verifying the im-
plementation of the sampling scheme. To verify the sampling

scheme, we generated a large collection of scenes from which
feature distributions can be compiled and compared to the
observed feature distributions. We began by verifying that the
marginal distributions over factor features closely match by
comparing their histograms, and used this to set the burn-in
time for Metropolis-Hastings to 1000 steps.

Figure 4 shows the real-world scene, the scene factor
graph, and a corresponding sampled scene. Note that the
inactive vehicles and the fore and rear of the scene do not
change during sampling, and that the resulting scene adheres
to the same structure. Most importantly, sampled scenes
qualitatively look real.

B. Emergent Metrics

Comparing variables not explicitly included in the model
to those extracted from a sampled dataset is one method
for ensuring that a generative model is representative of the
real world. A selection of marginal and emergent metrics
are shown in Fig. 5. These were extracted from a set of
10 000 scenes sampled from both the prior Bayesian network
model and the new factor graph model. The Kullback-Leibler
divergence [16] over a uniform bin-width piecewise-uniform
discretization for each metric is included as a bar chart. A
smaller bar indicates a closer match to the true distribution.

Results show that the factor graph model produces a closer
match to the true distribution over all candidate metrics.
The factor graph model clearly outperforms in speed, lane
heading, and headway. The factor graph model produces
far fewer scenes with unrealistically small timegaps and
headways. Both models perform nearly equally well in lane
offset, perhaps due to it being largely independent of the lead
and trailing vehicle.

The factor graph and Bayesian network models differ
in several ways. First and foremost, the Bayesian network
model generates scenes from scratch, one lane at a time,
by generating a chain of vehicles using a series of condi-
tional probability samples. The factor graph model uses the
Metropolis-Hastings algorithm to adjust an existing scene
to obtain a new one with the same network structure. This
ensures that the roadway remains populated in the same
manner as it was in the original scene. Populated lanes
remain populated, and empty lanes remain empty.



Fig. 4: The leftmost scene is from the NGSIM dataset, the center scene includes the factor graph structure, and the rightmost
scene was sampled from this factor graph using Metropolis-Hastings with 1000 burn-in steps.
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Fig. 5: Extracted metrics from scene datasets, comparing the previous
Bayesian network model to the new factor graph approach. Line plots
indicate the probability distribution over each metric and the bar plots
indicate the Kullback-Leibler divergence between the model distributions
and the real world distribution. Smaller KL-divergence values indicate a
closer match.

Secondly, the factor graph model includes relationships
across lanes and enforces relationships between multiple
vehicles at a time. The Bayesian network does not include
relationships across lanes and only generates vehicles ac-
cording to a leader / follower relationship.

Finally, the factor graph model is based on continuous
features, whereas the Bayesian network model was originally
based on discrete features. While neither model is con-
strained to either continuous or discrete variables, inference
and structure learning in Bayesian networks is made easier
with the use of discrete variables, but leads to a trade-
off between resolution and the curse of dimensionality. We
tried discrete variables with the factor graph and this also
outperformed the Bayesian network model.

C. General Road Networks

In this section we investigate the performance of the factor
graph approach on larger scenes and general road networks.

Scenes were extracted at 1 Hz from the completely populated
Highway 101 roadway, including both the mainline lanes and
the auxiliary lane. These scenes are approximately 600 m in
length. An example scene in shown in Fig. 6. A factor graph
model was trained on the dataset of full scenes and a dataset
of 1000 scenes was sampled with 1000 burn-in steps.

Metrics were extracted separately for vehicles on the
Highway 101 mainline lanes and the auxiliary lane. These
are shown in Fig. 7. Vehicles in the mainline lanes account
for 98 % of all vehicles.

The factor graph model shows close agreement with
the true dataset across all metrics for both mainline and
auxiliary vehicles. The auxiliary lane exhibits more positive
lane centerline offsets and headings due to the frequent
lane changes from vehicles merging onto the highway. The
headway distribution for the auxiliary lane is more uniform,
due to infrequent vehicles. Vehicles in the auxiliary lane also
tend to drive faster than in the congested mainline lanes.
Nevertheless, because of the conditional coupling learned
through the following factors, the factor graph model still
produces valid vehicles in the auxiliary lane.

VI. CONCLUSIONS

This paper developed a factor graph model for scene gen-
eration on arbitrary highway topologies that closely matches
the true distribution of driving scenes. This paper also
showed how to sample from the factor graph model using the
Metropolis-Hastings algorithm, which allows for sampling
initial scenes from real-world scenes, ensuring that highways
are realistically populated. Empirical demonstrations show
that the proposed method is superior to the state of the art
in producing sample distributions which reflect real-world
scenes.

Future work will investigate alternative factor features,
alternative methods for the proposal distribution, and include
additional information in the dataset, such as brake light
indicators. The method’s performance should be investigated
on more complicated road networks, such as merging, round-
abouts, and toll booths, and should be compared to scene
generation via simulation burn-in. All software is publicly
available at github.com/sisl/2016 itsc scenegen.
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Fig. 6: A factor graph over a full-size scene on Highway 101.
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Fig. 7: Scene metric distributions for scenes covering the full Highway 101 road network.
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