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Abstract—Probabilistic microscopic traffic models provide a
statistical representation of interactive behavior between traffic
participants. They are crucial for the validation of automotive
safety systems that make decisions based on surrounding traffic.
The construction of such models by hand is error-prone and
difficult to extend to the complete diversity of human behavior.
This paper describes a methodology for microscopic traffic model
construction based on a Bayesian statistical framework connected
to real-world data and applies it to learning models for free-
flow, car following, and lane-change behaviors on highways. The
evolution of traffic scenes is represented by a generative model
learned for individual vehicles that captures their response to
other traffic participants as well as the road structure. Our
evaluation shows realistic behaviors over a four second horizon.
A complete implementation is available online.

I. INTRODUCTION

Modern road vehicles employ a variety of safety systems
including lane departure warning, forward collision avoidance
and mitigation, blind spot monitoring, and collision imminent
braking systems. As the automotive industry moves towards
autonomous driving, these safety systems will act with increas-
ing autonomy and engage in increasingly complicated driving
interactions. Confidence in the performance and robustness of
these safety systems is required before public deployment due
to the potentially fatal consequences of error in their operation.

Recently, models of aircraft behavior have been developed
to validate collision avoidance systems [1]. These models used
dynamic Bayesian networks to represent encounters between
aircraft. Model structure and parameters were learned from
a large corpus of radar data. Use of these models in optimal
policy generation resulted in significant reductions in collision
rates and pilot alert rates [2]. This paper adapts this approach
from aviation and uses it in the derivation of probabilistic
driving models.

Use of probabilistic action models in microscopic traffic
simulation has also been the subject of previous research.
Acceleration models for car following have been studied
extensively since the 1950s [3]. Specific models have been
developed for many scenarios, some of which include lane-
changing [4], merges [5], and emergency braking [6]. These
models assume specific features and forms for the response
equations, and lateral control is often limited to a binary lane
change decision.

Recent work has outlined a high level framework for proba-
bilistic driving models and seeks to automate the construction
of microscopic action models from data. In [7], a softmax
classifier based on a linear feature weighting is used to identify
a context class tied to a Gaussian acceleration distribution.
In [8], a microscopic action model is constructed using random
forests. Their work modeled a Gaussian distribution over
acceleration and turn-rate conditioned on local context. The
resulting distribution is necessarily unimodal and was only
tested on a simulated scenario with two vehicles.

The probabilistic models developed in this paper exhibit
several important properties. First, these models are automat-
ically learned from naturalistic driving data from various traf-
fic settings. Second, unlike maneuver-recognition approaches,
these models capture microscopic acceleration and turn-rate
behavior on a per-vehicle basis. Third, behavior is modeled
using a Markov model represented as a dynamic Bayesian
network, which can fit arbitrary distributions with sufficient
discretization. Feature selection is a natural result of structure
search, allowing for models to be automatically learned for
specific driving scenarios or geographic regions.

II. PROPAGATION MODEL OVERVIEW

Let a scene st define the joint configuration of vehicles at a
particular time t and any past information necessary to satisfy
the Markov assumption. A propagation model represents the
distribution P (st+1 | st), relating a scene to the distribution
over successor scenes. The objective of this paper is to
establish a framework for obtaining an accurate distribution
over future traffic scenes from real-world driving data.

Varying roadway composition and traffic participant quan-
tities make directly modeling a distribution over future scenes
difficult. Recent approaches develop microscopic action mod-
els applied on a per-vehicle basis based on local context
extracted from the current scene, P (a(i)t | st, b(i)t ), where a(i)

is the action taken by the ith vehicle and b(i)t is its identified
behavior [5], [8]. Probabilistically valid future scenes can be
obtained by sampling from the action distribution for each
traffic participant and propagating each vehicle over a small
time-step using a dynamics model.

Prior work on aircraft propagation models used dynamic
Bayesian networks (DBNs) to represent the action distribution
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Fig. 1: Probabilistic scene propagation model. For each vehicle in
scene st, extract indicator feature set f (i)

t , identify behavior b(i)t , and
sample action a

(i)
t . Propagate all vehicles to obtain next scene st+1.

P (a
(i)
t | st, b(i)t ) [1]. A DBN models a probability distribution

over target variables using observed variables at time t [9],
[10]. Each target variable has a conditional probability table
that determines the distribution over the specified variable
given the values of its parents in the network. A Bayesian
network uses conditional independence between variables to
reduce the number of parameters required to define the joint
distribution over the variables. Traditional Bayesian methods
for learning the network structure and conditional proba-
bility statistics from real-world data assume discrete model
variables. Most of the variables in the driving model are
continuous. Discretizing all model features and target variables
allows for the use of existing learning methods. Furthermore,
the identification of optimal features to use as indicators in the
DBN can be framed as a structure learning problem.

The resulting generative model can be used to propagate
arbitrary traffic scenes. Figure 1 outlines the scene propagation
process. The behavior of each vehicle in an initial scene
configuration is identified based on context. The longitudinal
and lateral control inputs are obtained by sampling from the
action distribution conditioned on extracted indicator features.
Each vehicle is propagated deterministically over one time-
step using a dynamics model to obtain the next scene.

Examples of randomly selected actual and simulated scenes
are shown in Fig. 2. While quantitative methods are used
to compare model validity in Section VI, this figure gives a
qualitative view of observed and sampled scene tracks. The
simulated scene is set to the same initial conditions as in the
observed data set, resulting in similar behavior over the 10s
simulation period. In both scenes, the trailing vehicle makes a
left lane change to overtake the slower leading vehicle while
all other vehicles hold their lanes.

An ideal microscopic traffic model produces a realistic
action distribution for any possible traffic scenario. Accom-
plishing this with a single model is difficult, as different
vehicle behaviors are best described by different indicators.
Different models have traditionally been developed for differ-
ent behaviors [3]–[6]. Our method follows this approach and
yields a general framework that can learn suitable structures
and parameters for any behavior class covered by the data set.
In this work, we restrict our focus to three scenarios that are
particularly important for driving applications: free-flow, the
vehicle may drive unimpeded in its lane at its desired speed;
car following, the vehicle follows its lane while keeping pace
with another vehicle; and lane-changing, the vehicle selects

TABLE I: Behavior definitions and frame counts

Behavior Description

free-flow
the front timegap is > 3s, or
the front vehicle is faster by more than 0.5m s−1

car following
the front timegap is < 3s, and
the front vehicle is no faster than 0.5m s−1

lane-change
continuous sets of frames for which
the absolute lateral velocity is > 0.1m/s and
a lane centerline switch occurs

and moves into another lane. Vehicle behaviors are identified
at each time step so the appropriate model can be applied.
Behavior class definitions are given in Table I. Free-flow and
car following are mutually exclusive whereas lane-changes
occur during free-flow or car following.

III. DATA SOURCE AND FEATURES

This work uses real-world highway driving data collected
in the San Francisco Bay Area of Northern California and
Detroit, Michigan. Approximately two hours of post-processed
driving data were available for model construction.

Drives were conducted with a sensor-equipped passenger
vehicle allowing precise ego motion estimation and tracking
of surrounding vehicles through 360 degree LIDAR and radar
sensor coverage. Data with motion estimates for ego and
surrounding vehicles sampled at 20Hz were made available
for this work. Position and velocity traces were recorded
for the ego-vehicle in global coordinates and for surrounding
traffic participants in an ego-relative frame. Training data was
restricted to that of the ego-vehicle as the surroundings of other
vehicles are often occluded, making reasoning about their
actions difficult. Future models should learn from a variety
of vehicles to capture behavior differences. Data processing
details are available at the link listed at the end of the paper.

A. Feature Extraction

A set of 143 candidate features were extracted for the ego-
vehicle from lane-relative tracks. The set includes core fea-
tures from ego dynamics, roadway features, relative features
between vehicles, past states, and aggregate features over a
vehicle’s history. Core features describe the current state of the
ego vehicle, including such features as velocity and turn-rate.
Roadway features are measured with respect to the nearest
center lane and require knowledge of the surrounding roadway
structure. Relative features between vehicles include time and
distance headways and other relative measurements required
for interactive traffic prediction. Features dependent on past
actions are included as well, and require recording these values
when propagating a vehicle in simulation. Aggregate features
include the standard deviations, minimum, and maximum val-
ues for acceleration and turn-rate over various time histories,
and require more detailed traces to be recorded.

This set of candidate features reflects those used in the
driving literature for intention estimation [8], [11], [12]. For
a complete list of candidate features and their definitions see
the supplemental online material.
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Fig. 2: Observed and simulated scene tracks for same initial conditions. The scenes are 10s in duration. Markers indicate 1s intervals.
Longitudinal dimension is significantly compressed. Collisions do not occur between vehicles in either scene.

Continuous features were discretized using bin boundaries
chosen using the variables’ marginal distributions. Discretiza-
tion boundaries are available in the supplemental material.

B. Target Variables

The target variables in the microscopic model are the accel-
eration (afut) and turn-rate (ψ̇fut) over the next quarter-second
time step, corresponding to the traditional throttle/break and
steering wheel driving inputs. The mean acceleration over
the following quarter-second horizon was extracted using the
velocity difference, afut = (vt+∆T − vt)/∆T .

Models trained using a direct turn-rate output exhibited
high sensitivity when traveling at highway speeds, as slight
perturbations could lead to large lateral deviations. Improved
performance was gained by propagating vehicles using a turn-
rate computed from a desired lane-relative heading, ψ̇fut =
ψdes − ψ, where a desired lane-relative heading ψdes of zero
causes the vehicle to drive parallel to the closest centerline.
The final target variable set consists of the future acceleration
afut and the constant desired lane-relative heading over the next
time-step ψdes, extracted by solving the differential equation
of motion assuming a constant turn-rate:

ψdes =
ψt+∆T − ψte

−∆T

1− e−∆T
. (1)

IV. MODEL LEARNING

A representation for the probability distribution for model
variables within the DBN must be chosen. Naturally discrete
variables are modeled using multinomial distributions. Con-
tinuous and hybrid variables are discretized with multino-
mial distributions over discrete bins and uniform distributions
within bins. Resulting models can match arbitrarily complex
distributions with a sufficient number of bins, as has been
successfully applied in aircraft encounter models [1].

A. Structure Search

Obtaining the vehicle action model requires feature identi-
fication, obtaining the DBN graph structure that best matches
the observed data, and obtaining the sufficient statistics for all
conditional probability tables. Statistical techniques developed

since the mid-1990s in the machine learning community
infer model structure from data [13]. Structure search for a
Bayesian network seeks the graph structure G given the dataset
D that maximizes P (G | D) [14]. We make the common
assumption of a uniform prior over structures such that P (G)
is constant, and use the K2 parameter prior which assigns
a baseline uniform distribution over conditional probability
table statistics [10]. For numerical reasons it is more efficient
to maximize the log-likelihood lnP (G | D), also known as
the Bayesian score [15]. The Bayesian score allows model
complexity to scale with the amount of training data. This is
especially important in feature selection, as the amount of data
will affect how many features are selected.

B. Efficient Feature Selection

Given infinite data and computing resources, one could
conceivably use the entire set of 143 candidate features in
the DBN. Conditional probability tables grow exponentially
with the number of parent variables, making this intractable
for reasonable dataset sizes and computation times. We instead
propose automated feature selection through structure search
to optimally limit the number of features while finding the
Bayesian network graph structure which best fits the data [15].
Once the graph is identified, unnecessary indicator features are
discarded and the conditional probability tables for the result-
ing variables are populated using the posterior distribution.

The general graph search problem is NP-complete, and the
space of directed acyclic graphs is superexponential in the
number of variables [16]. The search space for this problem
can be drastically reduced by leveraging a desired model
structure. In our setting, all indicator features are observed and
thus need not have parents. The only edges in the network
go from indicator variables to target variables or between
target variables. The Bayesian score decomposes over variable
nodes [14]. Structure search can thus identify the set of parents
for each target variable independently, subject to the acyclicity
constraint that afut ↔ ψdes is not bidirectional.

Three heuristic search methods were used to identify candi-
date graph structures maximizing the Bayesian score. Forward
Search is a baseline greedy hill-climbing procedure which



TABLE II: Networks maximizing Bayesian score using graph traversal with random initialization.

Scenario Model Structure from Smaller 72 Candidate Feature Set Model Structure from Larger 143 Candidate Feature Set

free-flow
afut ← a, taccel, tbrake, apast

-1s
ψdes ← ψ, vFy , aFy , ttcrmr

afut ← a, taccel, tbrake, aFy , āFx,250ms, âFx,1500ms

ψdes ← ψ, vFy , ttcrmr , σ(ψ̇)750ms,
ˆ̇
ψ250ms

car following
afut ← a, taccel, tbrake, ttcx,front

ψdes ← ψ, ψ̇, vFy , aFy , ttcrml, v, nlr

afut ← a, taccel, tbrake, āFx,250ms, âFx,1500ms

ψdes ← ψ, ψ̇, vFy , aFy , ttcrml, nlr, vFx,scene, ˆ̇
ψ500ms, σ(ψ̇)750ms

lane-changing
afut ← a, taccel, tbrake

ψdes ← ψ, vFy , aFy

afut ← a, taccel, tbrake, âFx,250ms
ψdes ← ψ, vFy , aFy , σ(aFy )250ms

Features: velocity v, lateral velocity vFy , mean longitudinal velocity of all vehicles in scene vFx,scene, acceleration a, lateral acceleration aFy , past acceleration 1s previous apast
-1s , lane-relative heading in Frenet frame ψ,

lane-relative turn-rate in Frenet frame ψ̇, time of consecutive positive acceleration taccel , time of consecutive negative acceleration tbrake, time to collision with leading vehicle under const. vel ttcx,front ,

number of lanes to right nlr, time to crossing left/right lane marker ttcrml/r , mean value over history f̄H , maximum value over history f̂H , standard deviation of value over history σ(f)H

begins with an empty graph and successively adds the next
edge yielding the greatest increase in Bayesian score until
a local maximum is achieved. Graph Traversal augments
Forward Search with edge removal (and edge reversal for
afut ↔ ψdes). Graph Traversal with Random Initialization
increases the chance of finding better local optima by running
Graph Traversal with multiple randomly initialized graph
structures and selecting the best result.

Each algorithm was run on two feature sets for free-flow: the
full feature set of 143 indicator features and a reduced set of 72
features, lacking the aggregate features. Random initialization
was run with 100 randomly chosen networks, each with two
randomly selected parents per target variable.

Forward Search and Graph Traversal produced the same
graph structures. The inclusion of edge removal and reversal
operations in Graph Traversal are insignificant when the graph
structure is restricted to a two-layer inverted tree, but is neces-
sary when the structure is initialized with random edges. Ran-
dom Initialization found structures with the highest Bayesian
scores and was thus used for all subsequent experiments.

C. Structure Learning Results

The resulting model structures for each scenario and feature
set are shown in Table II. Looking at the selected indicator
features, the future acceleration afut is dependent on the current
acceleration and how long the vehicle has been continuously
accelerating or decelerating. The desired lane-relative heading
angle ψdes is dependent on the current turn-rate and other
lateral features such as the lateral velocity and lateral accel-
eration. Some features are only present in certain behavior
models. For example, the time to collision with the leading
vehicle, ttcx,front, is present in the car following model but is
irrelevant in free-flow.

The models learned using the larger feature set were similar
to those learned using the smaller feature set. The additional
aggregate features are seen in some of the models but do
not significantly affect the core feature set. The number of
indicator features selected in the resulting models is heavily
dependent on the number of training samples. The reduced
training sample count for the lane change model (~8% that
of free-flow) is reflected in its smaller feature count. More
detailed models can be obtained by increasing training data
quantity and state-space coverage.

V. MODEL APPLICATION

The resulting microscopic action models can now be applied
to the propagation of traffic scenes by applying the micro-
scopic action model to each vehicle in the scene. First, a ve-
hicle’s state and behavior are identified. Free-flow and car fol-
lowing can be determined from their definitions (Section III),
whereas lane changing behavior can be chosen according to
gap acceptance models or lateral velocity [4]. The relevant
indicators are extracted and discretized. Discrete values for
the target variables afut and ψdes are obtained by sampling
from their conditional probability distributions. Continuous
values for afut and ψdes can be obtained by sampling from
the uniform distribution defined by the bin boundaries. Zero-
binning, which involves returning zero if zero is in the bin’s
domain, can reduce noise when a traffic participant is holding
a steady speed or lane offset.

Two methods of control input smoothing were investigated
to reduce jitter: a simple moving average, SMA(n), in which
the mean of the previous n actions is applied, and a weighted
moving average, WMA(n), in which the previous n actions
have linearly decreasing weight. Smoothing histories up to
twelve model time-steps were considered (∆T = 1

8 s). Param-
eters were chosen separately for afut and ψdes.

The optimal sampling and smoothing methods for a par-
ticular model were tuned to match the probability density
over final positions obtained from simulation with the one
observed in the real-world data by minimizing the Kullback-
Leibler divergence between both distributions. These distri-
butions are approximated by binning the final positions after
4s propagation into a 2D histogram based on displacement in
the Frenet frame. The resulting bin counts form a discrete
Dirichlet probability distribution. Cyclic coordinate descent
was used to iteratively converge towards a local optimum [17].

VI. EVALUATION

Traffic propagation models must be representative of the
form of driving they were intended to model. Models devel-
oped for each behavior class were compared to real-world data
using emergent variables from simulation.

A. Free-Flow

Actual driving segments 4s in duration were compared to
trajectories propagated in simulation from the same initial
conditions. The emergent variables centerline offset and speed



TABLE III: Free-flow model validation comparison results

Small Model Large Model Real-World

afut sampling uniform zerobin
afut smoothing SMA(11) SMA(9)
ψdes sampling uniform zerobin
ψdes smoothing - WMA(2)

mean lane offset 0.145± 0.099 0.146± 0.097 0.141± 0.098
mean speed 29.04± 0.24 29.04± 0.27 29.03± 0.22
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Fig. 3: Qualitative comparison of tracks from free-flow models; 4s
horizon, log intensity scale, 10 857 tracks each

were extracted for further evaluation. Trajectories from the
dataset were selected if they satisfied the free-flow criteria
and had initial centerline offset ∈ ±0.25m, lane-relative head-
ing ∈ ±0.015rad, turn-rate ∈ ±0.01rad/s, and acceleration
∈ ±0.05m/s2. The probability density over the resulting 10 857
tracks were compared to the probability density resulting
from simulated trajectories. The simulated vehicle was initially
placed in the middle lane of a three lane highway with
centerline offset, heading, speed, turn-rate, and acceleration
matching the samples from the original dataset.

The displacement densities for both the small and large
free-flow models at the end of the 4s duration are shown in
Fig. 3. The associated parameters and validation metrics are
shown in Table III. A quantitative comparison of centerline
offset and speed to real-world data exhibits close matches
with both models and does not directly favor one model over
the other. It follows from figure 5, however, that the model
constructed from the smaller candidate feature set produces a
better propagation density match. The density from the larger
feature set has increased longitudinal variance suggesting
higher variance in the chosen acceleration control signals. One
hypothesis is that the higher indicator count for the larger
model brings out the effects of the parameter prior. These
effects can be averted with more free-flow training data.

B. Car Following

Trajectories were selected if they satisfied the car following
criteria and had initial centerline offset ∈ ±0.75m. The ego
vehicle was propagated in simulation using the car following
model. The lead vehicle was propagated using the small free-
flow model, an assumption which can lead to inconsistent
results in high-density traffic. The resulting 1585 trajectories
produced the position densities given in Fig. 4 and the asso-
ciated parameters and validation metrics in Table IV.

TABLE IV: Car following model validation results

Small Model Large Model Real-World

afut sampling uniform uniform
afut smoothing SMA(10) WMA(3)
ψdes sampling uniform zerobin
ψdes smoothing SMA(10) SMA(12)

mean lane offset 0.379± 0.255 0.380± 0.254 −0.016± 0.417
mean speed 30.43± 9.02 30.42± 8.98 30.51± 9.11
mean timegap 1.16± 1.50 1.13± 1.40 1.32± 1.51
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Fig. 4: Qualitative comparison of tracks from car following models;
4s horizon, log intensity scale, 1585 tracks each

From the qualitative density comparison, it follows that the
small model is a better fit to the real-world data. The density
from the large model has increased variance in longitudinal
displacement. The quantitative variables from both models
show great similarity to one another. Both models exhibit
a mean lane centerline offset approximately half a meter
off from the true mean centerline offset. The mean speed
value shows high variance due to the high variance in initial
conditions used in the comparison. The mean timegap from
the model slightly underestimates the true mean timegap.

C. Lane-Change

Lane change models were trained using 53 real-world lane
changes. This small sample size produces maximum likelihood
structures with low indicator feature counts. These models
lack lane-relative features and thus lack the context needed
to produce plausible trajectories from all initial conditions.

For demonstration purposes, a lane change model was
trained by augmenting the maximum-likelihood structure for
ψdes with additional variables known to capture road structure.
The added variables include the centerline offset, the time to
crossing the left lane marker, the time since crossing a lane
boundary, and the quarter-second past lateral velocity. The
resulting feature set is shown in Table V.

Increasing the feature count results in exponential growth
in the sufficient statistics required to specify the conditional
probability tables. The influence of the uniform K2 prior is
significantly increased in sparse models. Training counts were
quadrupled to reduce these effects in this demonstration.

A comparison of the augmented model performance to the
original model was conducted by evaluating left lane changes
with an initial lateral velocity of 0.2m s−1 and initial placement
at the lane centerline. Model performance was assessed by
comparing the centerline offset and lateral velocity after 4s,



TABLE V: Augmented lane-change model structure.

afut ← a, taccel, tbrake

ψdes ←
{
ψ, vFy , aFy

}
orig

⋃{
dcl, ttcrml, tscr, vpast

y,-250ms

}
aug

TABLE VI: Performance evaluation original and augmented
lanechange models on left lane changes. Positive lateral velocity is
towards the left.

model final centerline offset final lateral velocity
(m) (m/s)

original 3.62± 0.73 0.134± 0.118
augmented 3.33± 0.42 0.075± 0.046

listed in Table VI. Figure 5 shows one hundred lane-change
trajectories using the augmented lane-change model.

As expected, results using the original model without road
structure features do not respect the lane boundaries and yield
high centerline offsets and trajectories with continued motion
towards the left. The augmented model produces plausible
trajectories which follow the lane centerline and have signifi-
cantly decreased positional and velocity variance. Results will
directly benefit from higher data availability.

VII. CONCLUSION

This paper introduces an analytic framework for learning
microscopic driving models from real-world data. Dynamic
Bayesian networks were used to represent a distribution over
vehicles’ lateral and longitudinal control inputs, which when
applied in aggregate can be used to propagate traffic scenes.
Model parameters and structure are directly inferred from data.
Models for free-flow, car following, and lane change were
learned from recorded data and their feasibility was assessed
both qualitatively and quantitatively. All models exhibit real-
istic motion when evaluated over a 4s horizon. Models will
be revised as more data becomes available.

Future work should investigate incorporating behavior and
driver intention as latent variables and learn their descriptions
from data, as has been proposed and attempted by others [8],
[11], [12]. Including vehicle size characteristics would allow
the model to distinguish between vehicle classes. Generative
models can be used in simulation to validate or optimize
candidate safety systems as was done in civil aviation [2].

As active safety systems become more prevalent, they
will increasingly rely on accurate predictions of the behavior
of other traffic participants. The data-driven model learning
framework outlined in this paper can directly form the basis
for automatically constructing such models. Complete im-
plementation details are available at https://github.com/sisl/
TrafficPropagationModel.
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