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Abstract—Validation of automotive safety systems can be done
by simulating millions of driving traces. It is important that
the distribution of initial scenes for these driving traces be as
representative of reality as possible so that safety risk can be
estimated accurately. This paper presents a methodology for
constructing probability distributions over initial highway scenes
from which samples can be drawn for safety evaluation through
simulation. A method for automated model construction based
on a Bayesian statistical framework is introduced and applied to
the NGSIM Highway 101 and Interstate 80 datasets. Four models
of increasing complexity and fidelity are developed. A complete
implementation is available online.

I. INTRODUCTION

As the automotive industry moves towards autonomous
driving, it becomes increasingly necessary to develop ad-
vanced driving safety systems, collision prediction systems,
and the tools for their rigorous analysis. Regulatory authorities,
such as the European Commission and the National Highway
Traffic Safety Administration, require drive tests to ensure
system effectiveness and safety. Although a drive test can
evaluate a system in actual operation, only relatively few cases
can be examined due to time, cost, and safety constraints.
Simulation can be used to assess system robustness over a
significantly wider range of situations.

Recently, models of aircraft behavior have been developed
to validate aircraft collision avoidance systems. These models
used dynamic Bayesian networks to represent encounters
between aircraft [1]. Both the model structure and parameters
were learned from a large corpus of radar data. These models
have been critical in the development and validation of a next-
generation collision avoidance system [2]. This paper adapts
this approach from aviation and uses it in the derivation of
probabilistic driving models.

Probability theory has long been used in traffic flow research
to capture statistics for macroscopic flow behavior and micro-
scopic behavior models. Headway spacing and car-following
models have been studied extensively since the 1950s [3],
[4], with more recent models leveraging interactions among
a large number of vehicles to obtain dynamic distributions
over traffic fluctuations [5]. These models typically assume
vehicles perfectly follow their lanes and thus do not capture the
complete position and orientation needed for proper validation
of a safety system using high-fidelity propagation models.

Modern traffic simulation programs vary in how they ini-
tialize traffic scenes. Simulation of Urban Mobility (SUMO),
an open-source microscopic traffic simulator developed by
the German Aerospace Center (DLR), initializes vehicles
using univariate Gaussian speed distributions and only in-
serts vehicles if minimum headway requirements are met.
Vehicles adhere to the lane centers and lane changes are
instantaneous [6]. MITSIM, an open-source microscopic traffic
simulator developed at the Massachusetts Institute of Technol-
ogy Intelligent Transportation Systems Program, also inserts
vehicles based on a minimum headway but sets the initial
speed deterministically based on mean section speed and
the vehicle’s desired speed [7]. More advanced proprietary
systems, such as PreScan by Tass International, provide tools
for the automatic generation of origins and destinations but
use similar spawning strategies to populate road networks.

The probabilistic scene distributions developed in this paper
allow for the stochastic sampling of initial scenes for a straight
section of highway that accurately represents the distributions
of scenes learned from real-world data. The resulting models
describe complete vehicle poses including centerline offsets
and orientations. The proposed method can be used to generate
scenes across varying lane counts and the resulting models
can be sampled as many times as needed to obtain initial
scenes for safety system validation through simulation. The
performance of the developed methods are evaluated on two
real-world datasets.

II. MODEL OVERVIEW

Automotive safety system analysis through simulation re-
quires the stochastic sampling of initial driving scenes. Let
a scene s define a joint configuration of traffic participants.
A scene distribution P (s | h) is a probability distribution
over scene configurations given a highway topology h. This
work seeks to establish a framework for obtaining an accurate
representation of P (s | h) from real-world driving data.

It is desirable that a model for representing scene distribu-
tions over a highway section for use in Monte Carlo safety
system analysis possess several properties. First, the model
should adequately capture the correlations between a variable
number of vehicles in the continuous, multidimensional state
space defined by the given highway section. Second, the model
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Fig. 1: Lane-relative frame for a straight multi-lane highway

should allow for the efficient sampling of scenes. Sampled
scenes should be distributed as closely as possible to the true
distribution the model is meant to represent. Finally, the model
should be capable of computing scene likelihoods so that it
can be evaluated against other models using cross-validation.

Directly modeling the scene distribution is made difficult
by varying traffic participant counts, all of which possess
varying degrees of correlation. The method adopted in this
work is to only model correlations between vehicles in a local
neighborhood. We show that such a model can be used to
iteratively construct a scene by inserting vehicles along the
fringes until the entire highway section is populated. The
resulting method can be applied to highway sections with
arbitrary lane counts and section lengths.

The models developed in this paper are constructed using
several assumptions. First, all models assume a straight sec-
tion of multi-lane highway. Second, all models assume that
lanes can be freely shifted longitudinally with respect to one
another. Third, the models do not distinguish between vehicle
classes such as trucks and motorcyclists. Relaxation of these
assumptions is left for future work.

Consider a straight highway section h of length L and N
lanes of width W . A scene s is an arrangement of m vehicles
ϑ(i), i = 1, . . . ,m within the bounds of the highway sec-
tion. Vehicles are described by four-tuples ϑ(i) = 〈x, y, v, φ〉
containing the two position coordinates, speeds, and lane-
relative headings. The x-axis measures the distance of the
center leading point of the vehicle to the left-most edge of
the highway and the y-axis measures the distance of the same
point from the scene entry point, as shown in Fig. 1.

This work uses Bayesian networks to represent probability
distributions. Bayesian networks leverage conditional indepen-
dence between variables to reduce the number of parameters
required to define a joint distribution. Statistical techniques
in the machine learning community readily infer model struc-
ture from data, and efficient algorithms exist for computing
and sampling from marginal and conditional distributions for
Bayesian networks [8].

Many off-the-shelf structure learning algorithms for
Bayesian networks require discrete variables. Continuous and
hybrid variables in this work are discretized and modeled
using multinomial distributions. The distributions over values
within each bin are assumed to be uniform. This approach
allows models to match arbitrarily complex distributions with
a sufficient number of bins, and has been successfully applied

in aircraft encounter models [1].
Four models are developed in this work; a marginal model

defining marginal probabilities over vehicle state variables, a
base model representing a joint distribution over the vehicle
state variables, a chain model with additional distance and
speed variables to capture correlations between adjacent vehi-
cles within lanes, and a hierarchical model which relates lane
distributions using a global scene density and lane positions.
Examples of randomly selected real-world and sampled scenes
from the hierarchical model are shown in Fig. 2.

A. Marginal Model

The marginal model defines marginal distributions over a
vehicle’s velocity p(v), centerline offset p(dcl), lane-relative
heading p(φ), and headway distance p(dfront), and is repre-
sented as an edgeless Bayesian network. It is a baseline against
which more complicated models can be measured. Lanes are
assumed independent and are constructed individually:

For each lane l ∈ 1, . . . , N :
1) Sample the first vehicle according to

ϑx ← center(l) + dcl ∼ p(dcl), ϑv ∼ p(v), and
ϑφ ∼ p(φ). Sample the distance to the next vehicle,
dfront ∼ p(dfront).

2) The longitudinal position of the first vehicle is shifted
randomly based on the headway distance to a potential
trailing vehicle, ϑy ← yoffset ∼ U (0, d ∼ p(dfront)).

3) Construct the next vehicle at y(i) ← y(i−1) + dfront by
sampling from all four marginal distributions as long as
the location of the next vehicle given dfront is within the
scene section length L.

The joint probability over vehicles in a scene under a
marginal model Mm factors over lanes. The likelihood of a
single lane with n vehicles indexed in increasing longitudinal
order is given by:

p(l | Mm) =

(
n∏

i=1

p(φ(i))p(v(i))p(d
(i)
cl )

)(
n−1∏
i=1

p(d
(i)
front)

)
× p(yoffset) · p(dfront > L− x(n))

(1)

B. Base Model

The base model is a Bayesian network over the variables
in the marginal model. It can capture correlations between the
model variables.

For each lane l ∈ 1, . . . , N :
1) Sample from the joint distribution p(v, φ, dcl, dfront).
2) Construct the first vehicle with ϑx ← center(l) + dcl,

ϑv ← v, and ϑφ ← φ.
3) The longitudinal position of the first vehicle is shifted

according to ϑy ← yoffset ∼ U (0, d ∼ p(dfront)).
4) As long as the location of the next vehicle given dfront

is within the scene section length L, sample from
p(v, φ, dcl, dfront) and construct the next vehicle.

The joint probability over vehicles in a scene under base
base model Mb factors over lanes. The likelihood of a lane
with n vehicles indexed in increasing longitudinal order is:
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Fig. 2: Example of real world and generated scenes from Highway 101, scene section 101b (defined in Section III)

p(l | Mb) =

(
n−1∏
i=1

p(v(i), φ(i), d
(i)
cl , d

(i)
front)

)
· p(v(n), φ(n), d

(n)
cl )

× p(yoffset) · p(dfront > L− x(n) | v(n), φ(n), d
(n)
cl )

(2)

C. Chain Model

The chain model extends the base model with three variables
to further capture relations between successively generated
vehicles. The additional variables are the distance to the
trailing vehicle drear, the velocity of the trailing vehicle vrear,
and the velocity of the leading vehicle vfront.

For each lane l ∈ 1, . . . , N :
1) Sample from the distribution marginalized by vrear,

p(v, φ, dcl, dfront, vfront, drear).
2) Construct the first vehicle with ϑx ← center(l) + dcl,

ϑv ← v, and ϑφ ← φ.
3) The longitudinal position of the first vehicle is shifted

according to ϑy ← yoffset ∼ U (0, drear).
4) As long as the location of the next vehicle

given dfront is within the scene section length
L, construct the next vehicle by sampling from
p(φ, dcl, dfront | drear, vrear = v, v = vfront) by condition-
ing on known values.

The joint probability over vehicles in a scene under a chain
modelMc factors over lanes. The likelihood of a lane with n
vehicles indexed in increasing longitudinal order is:

p(l | Mc) = p(v
(1)

, φ
(1)

, d
(1)
cl , d

(1)
front, v

(1)
front)

×
(

n−1∏
i=2

p(φ
(i)

, d
(i)
cl , d

(i)
front, v

(i)
front | drear, v, vrear)

)
× p(φ

(n)
, d

(n)
cl , (d

(n)
front > L − x

(n)
) | drear, v, vrear)

× p(yoffset | v(1)
, φ

(1)
, d

(1)
cl , d

(1)
front, v

(1)
front)

(3)

D. Hierarchical Model

The previous three models assume that lanes are gener-
ated independently, and thus can produce scenes with widely
varying lane flow rates and densities. The hierarchical model
attempts to address this by introducing ρscene, the number of
vehicles per scene. Variation in traffic across lanes is captured
using lane class Clane, which indicates whether a given lane is
the leftmost, rightmost, or bordered on both sides. The lane
generation procedure is identical to that of the chain model,
except that the scene density ρscene is sampled at the beginning

of the generation procedure and is used with the lane class
Clane to condition on each distribution.

Computing the likelihood for a scene under a hierarchical
model Mh requires integrating out the unobserved ρscene,

p(s | Mh) =

∫
ρscene

p(ρscene)

[∏
l

p(l | ρscene, C
(l)
lane)

]
dρscene, (4)

where the likelihood of a lane is computed as for the chain
model but conditioned on the scene density and lane class.

III. DATA SOURCE

This work used real-world driving data obtained from the
Next-Generation Simulation (NGSIM) US Highway 101 and
Interstate 80 datasets [9], [10]. Each dataset consists of 45
minutes of vehicle trajectory data collected using synchronized
digital video cameras providing the vehicle lane positions and
velocities over time at 10Hz. The US Highway 101 dataset
covers an area in Los Angeles, CA, approximately 640m in
length with five mainline lanes and a sixth auxiliary lane
providing highway entrance and exit. The Interstate 80 dataset
covers an area in the San Francisco Bay Area approximately
500m in length with six mainline lanes, including a high-
occupancy vehicle lane and an onramp. These datasets were
collected by the Next-Generation Simulation program in 2005
to facilitate automotive research and are freely available.

Traffic density in the datasets transitions from uncongested
to full congestion and exhibits a high degree of vehicle
interaction as vehicles merge on and off the highway and must
navigate in the nearly-congested flow. This and the datasets’
complete scene description make these sources particularly
useful for learning traffic scene distributions.

The NGSIM datasets provide positions and velocities in the
lane-relative frame as shown in Fig. 1. Vehicle trajectories
were smoothed according to the method described by Thie-
mann et al. [11]. Vehicle centerline offset dcl is defined
as the signed lateral offset of a vehicle from the closest
lane centerline. Lane-relative headings φ are obtained by
assuming zero sideslip and estimating the heading directly
from the trajectory, φ = tan−1(∆y/∆x). Headway distances
were measured from the front of the trailing vehicle to the rear
of the leading vehicle. All vehicles generated by the models
used the average vehicle length and width of 4.34 and 2.06
meters respectively.

Scenes were extracted by pulling all vehicles within a given
highway section from the dataset. In the Highway 101 dataset,
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Fig. 3: Data source schematics with scene sections. Each scene section is 91.4m long.

three highway sections were considered: section 101a before
the auxiliary lane, section 101b including the auxiliary lane,
and section 101c after the auxiliary lane. For Interstate 80
two highway sections were considered: section 80a before the
onramp and section 80b after the onramp. These sections are
overlaid in Fig. 3. All scenes are 91.4m (300 ft) long. Scenes
were subsampled at 0.1Hz to decrease sample correlation.

IV. MODEL LEARNING

The models considered in this paper are parameterized by
a set of hyperparameters λ and model parameters θ. Given
a candidate model M(λ, θ), a hyperparameter instantiation,
and a training dataset D of m traffic scenes s1:m, the model
parameters are tuned to maximize the likelihood

θ∗ = argmax
θ

P (θ | D,M, λ). (5)

An application of Bayes’ rule results in

P (θ | D,M, λ) =
P (D | θ,M, λ)P (θ | M, λ)

P (D | M, λ)
, (6)

where P (θ | M, λ) is a prior distribution over model param-
eters and P (D | M, λ) is constant in θ. If there is sufficient
mixing time between samples such that scenes can be assumed
independent and identically distributed, then the likelihood of
the dataset is the product of the scene likelihoods,

P (D | θ,M, λ) =
∏
si∈D

P (si | θ,M, λ) (7)

If we furthermore assume a uniform prior over model
parameters, the maximum a-posteriori instantiation of the
parameter vector is given by

θ∗ = argmax
θ

P (D | θ,M, λ) (8)

The goal of this work is to obtain a model that best
reflects the true distribution over highway scenes. A model
can be evaluated on a given dataset according to its likelihood,

P (D | θ,M, λ). The higher the probability of the observed
scenes, the better the model is said to predict the data.

Each model depends on the model parameters θ estimated
from the data and a set of hyperparameters λ. Assigning
the hyperparameters to maximize the likelihood of the model
given the training data often leads to overfitting. One method
for preventing overfitting is to separate the data into train-
ing and validation sets. Model parameters for a candidate
hyperparameter set were learned from the training set and
then compared to other hyperparameter instantiations by their
likelihood score on the disjoint validation set.

Ten rounds of 10-fold cross-validation were conducted to
reduce the variance caused by training on random partitions
of the dataset. The dataset was randomly divided into 10 equal-
sized sets, a model was trained against 9 of those parts and
validated against the remaining part for each of the 10 possible
allocations, and the average cross-validated likelihood across
all 10 parts was computed. The average cross-validated like-
lihood across rounds is distributed according to a Student’s-t
distribution [12]. Scene distribution models were compared
using their average cross-validated likelihoods. In practice one
uses the log likelihood to avoid numerical precision problems.

The model parameters for a Bayesian network are the
network structure and the conditional probability table counts
for each variable. The problem of finding the graph structure
of a Bayesian network that maximizes the likelihood is NP-
complete [13], but efficient heuristic methods exist in the
machine learning literature to find approximately optimal
solutions [14], [15]. Once a model structure is selected, the
conditional probability tables can be efficiently populated
using maximum likelihood. Model structure learning was
conducted using heuristic search procedures implemented in
the SMILE modeling environment developed by the Decision
Systems Laboratory at the University of Pittsburgh [16].

The hyperparameters for each model are the number of
evenly spaced bins used in discretizing the continuous vari-
ables. The set of hyperparameters for each model, variable
ranges, and the set of candidate bin counts considered for each



TABLE I: Hyperparmeter sets by model

Model Variables Requiring Bin Counts

Mm v, dcl, φ, dfront
Mb v, dcl, φ, dfront
Mc v, dcl, φ, dfront, drear, vrear, vfront
Mh v, dcl, φ, dfront, drear, vrear, vfront, ρscene

TABLE II: Variable candidate bin counts

Model Candidate Bin Counts

Mm 3, 5, 10, 50, 100, 250 and 500
Mb 3, 5, 7, 10 and 15
Mc 3, 5, 7, 10 and 15
Mh 3, 5, 7, 10 and 15

variable are listed in Table I, Table II, and Table III.

V. EVALUATION

In this section we compare the performance of the scene
distribution models. A model for each proposed method was
trained on each scene set extracted from the three highway
regions in the Highway 101 dataset and the two highway
regions in the Interstate 80 dataset. The average cross-validated
log-likelihoods of each model for each region are shown in
Fig. 4.

Further validation can be performed by extracting emergent
metrics from scenes generated from each model. The metrics
include the mean vehicle counts, the mean time to collision
for vehicles in a scene, and the ratios of lane speed and
lane density between the right-most and left-most lanes in a
given scene. The distributions over each metric variable were
extracted from 1000 samples from models trained on the 101b
dataset and are given in Fig. 5. The corresponding optimal
model structure and variable bin counts are given in Fig. 6.
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Fig. 4: Mean cross-validated log likelihoods of candidate
models over selected sections, with 95% confidence intervals.
Shorter bars indicate higher (better) likelihoods.

TABLE III: Variable ranges

Variable Range

vfront, vrear, v 0 30.5 m s−1

dfront, drear 0 91.5 m
dcl −1.75 1.75 m
φ −0.1 0.1 rad
ρscene 0 60 vehicles

extreme lane speed ratio = vrightmost/vleftmost (9)

extreme lane density ratio = ρrightmost/ρleftmost (10)

The mean cross-validation likelihood score generally in-
creases with model complexity. The chain model possesses the
highest (best) mean cross-validation likelihood for four out of
five road segments, with the hierarchical model outperforming
it in section 101c. The mean cross-validation likelihood scores
for the hierarchical model are similar to those for the chain
model, but the hierarchical model typically possesses higher
variance. This suggests that the addition of the global scene
density and lane class variables may not be supported by the
present data set sample size.

Distributions over the emergent metrics show rough consis-
tency in terms of number of vehicles, with the marginal model
producing the best mean and the chain model producing the
best overall fit. The joint and hierarchical models produce the
best matches for time to collision, but the true distribution has
a slightly longer tail. All four models show similar behavior
for the extreme ratios, indicating that the inclusion of the lane
class in the hierarchical model presently does not have the
desired effect.

VI. CONCLUSION

This paper introduces a methodology for learning distri-
butions over highway scenes from real-world data for use
in microscopic automotive simulation. Bayesian networks
were used to represent distributions over vehicle positions,
orientations, speeds, and other contextual variables for use
in successively generating vehicles along a lane. The model
parameters and structure are directly inferred from recorded
data. Four models of increasing complexity were learned from
the Next-Generation Simulation datasets for Highway 101
and Interstate 80 and their performance was assessed both
qualitatively and quantitatively. The resulting models produce
realistic driving scenes and can be sampled as many times
as needed for automotive safety system validation and risk
assessment through simulation.

Future work will include vehicle correlation across lanes.
Models will support general road compositions such as merge
ramps and urban features such as intersections, stoplights, and
crosswalks. Finally, these models will be extended to distin-
guish between vehicle classes such as motorcyclists and buses,
as these classes tend to exhibit different driving behaviors. Ad-
ditional information and implementation details are available
for download at https://github.com/sisl/HighwaySceneModel.
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Fig. 5: Distributions over metrics from sampled scenes from
Highway 101 section 101b. The extreme lane density ratio for
real-world data approaches infinity due to the lack of vehicles
in the auxiliary lane.
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