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Abstract— Effective navigation of urban environments is a
primary challenge remaining in the development of autonomous
vehicles. Intersections come in many shapes and forms, making
it difficult to find features and models that generalize across
intersection types. New and traditional features are used to train
several intersection intention models on real-world intersection
data, and a new class of recurrent neural networks, Long Short
Term Memory networks (LSTMs), are shown to outperform
the state of the art. The models predict whether a driver will
turn left, turn right, or continue straight up to 150 m with
consistent accuracy before reaching the intersection. The results
show promise for further use of LSTMs, with the mean cross
validated prediction accuracy averaging over 85% for both
three and four-way intersections, obtaining 83% for the highest
throughput intersection.

I. INTRODUCTION

This work seeks models that can effectively predict the
intentions of human drivers as they approach an intersection.
Intersection navigation is a crucial task for any urban driving
platform, and models for predicting driver intentions at
intersections are crucial to the development of safe and
effective automated driving policies and for human behavior
models in simulation-based safety validation.

Intention prediction at intersections has been the subject
of prior research, with work covering intention prediction in
isolation or alongside motion planning [1]–[5]. Models for
predicting complete trajectories have been developed as well,
with intention inferred in the process. Such work has used
Hidden Markov Models [2], [6], Gaussian Processes [7], Dy-
namic Bayesian Networks [8], Support Vector Machines [9],
and inverse reinforcement learning [3].

An additional body of work approaches the problem of
populated environment navigation and path planning, often
framing the problem as a Markov Decision Process (MDP),
including Partially Observable MDPs (POMDPs) [10], Inter-
active POMDPs [11], and Mixed Observability MDPs [12].
Unfortunately, these approaches must often rely on coarse
discretizations of the state and actions spaces in order to
make the problem tractable. Nonetheless, it is apparent that
using intention to supplement vehicle states in navigating an
intersection is a promising line of research. Sezer, Bandy-
opadhyay, Rus, et al. examined the decision marking problem
of a car turning right at a T-intersection and succeeded in
lowering the accident probability and intersection navigation
duration by capitalizing on intention-aware planning [12].

The work of Tang, Khokhar, and Gupta motivates this
paper. The authors build lane-level maps of intersections and
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use a variety of models to predict driver intentions as they
approach intersections [2]. They achieve 90% turn prediction
accuracy 2.8 meters before the car enters the intersection.
Their work is limited to four-way intersections, whereas our
work generalizes between any type of intersection, and we
evaluate on three- and four-way intersections.

We contribute to intersection prediction modeling in sev-
eral ways. First, we address limitations in prior intersec-
tion prediction models that limit them from applying to
any intersection composition. Second, we investigate several
feature categories and suggest new features that generalize
well across intersection types. Third, the proposed approach
does not require high-fidelity maps of the intersection to
be known ahead of time, and works well on simple layout
representations.

II. PROBLEM DEFINITION

This work develops and evaluates models that classify the
action a human driver will take at an upcoming intersection.
A driver can take three possible actions a at the intersec-
tion, turning left, right, or continuing straight. Each model
represents a conditional probability distribution P (a | f)
given a vector of features f . A good model will assign
high likelihood to the correct action eventually taken by the
driver at the intersection. Such models can be used in risk
assessment for motion planning or driver behavior modeling.

Several challenges must be overcome in developing practi-
cal intersection intention prediction models. These challenges
include developing models that generalize across unseen
intersections and unseen drivers; that predict over longer
prediction horizons, here with evaluating predictions up to
150 m before an intersection; and that use features that
are generally available to an autonomous driving system or
simulator, and thus do not require driver eye tracking or
similar inputs. All models are probability distributions rather
than mere classifiers, allowing them to capture the inherent
stochasticity in human driving behavior.

The models presented below are evaluated according to
both their classification accuracy and the likelihood assigned
to withheld data. A high accuracy indicates good classifica-
tion performance whereas a high likelihood indicates a good
distribution fit.

III. DATASET

This work evaluates models on real driving data from the
Next Generation Simulation (NGSIM) program conducted in
2005 by the Federal Highway Administration [13], [14]. Both
the Lankershim and Peachtree datasets are used, totaling
about 1 hour at 10 Hz. The NGSIM dataset provides the
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Fig. 1: Road networks for the Lankershim Blvd (left) and
Peachtree Street (right) datasets and intersection labels.

positions for all vehicles over large road sections, providing
a complete view of the intersection environment.

The training data was split into folds across the 9 intersec-
tions in order to assess the ability of models to generalize
to unseen intersections. There are four intersections in the
Lankershim dataset and five in the Peachtree dataset, as
shown in Fig. 1. The roadways exhibit both differing road
characteristics (wide versus narrow) and a combination of
intersection types, including both three and four-way inter-
sections.

IV. FEATURES

A set of 104 features was extracted from the NGSIM
data. The set includes base features from ego position and
dynamics, history features from past states, traffic features
based on neighboring vehicles, and rule features indicating
legal actions at the upcoming intersection. Several features
reflect those often used in the driving literature, whereas
extensive use of traffic features is scarce [1], [2], [4]. Prior
work has shown there to be a significant improvement in
the performance of the models when traffic features are
used [8]. Our use of simple rule features to provide a
characterization of the road is also novel. The most similar
prior work involved creating and using lane-level maps for
that purpose [2].

Missing feature values are set to zero, such as headway
distance when no lead vehicle is present. Potentially missing
features include accompanying indicator features to indicate
whether or not they are available.

A. Base Features

The base features used in all experiments are the magni-
tude of velocity and acceleration, the lane-relative heading,
the number of lanes to the curb and to the median, the
headway distance to the preceding vehicle (and associated

ego selected

Fig. 2: The traffic features include information about the
neighbors of the ego vehicle and the closest vehicle in the
intersection.

indicator), and the distance to the intersection. These fea-
tures are based on ego vehicle odometry and its immediate
surroundings. Distance to the intersection is used instead of
the time to intersection as the distance is invariant to cars
stopping before passing through the intersection.

B. History Features

The base features only capture a single moment in time,
so we add history features to provide several frames, thereby
allowing models to identify short and long term maneuvers.
The history features consist of base features extracted from
the frames 0.5 s, 1 s, 2 s and 3 s in the past. If the frame does
not exist, then the feature vector is a zero vector and the
accompanying indicator feature is set to false.

C. Traffic Features

Other traffic participants strongly influence driving behav-
ior. The traffic features include information about up to six
direct neighbors of the ego vehicle and the closest vehicle,
by Euclidean distance, currently in the intersection, as shown
in Fig. 2. The magnitude of velocity and acceleration, the
lane-relative heading, the headway distance (and indicator),
and the distance to the ego vehicle are extracted for each of
these vehicles. The lane features and distance to intersection
are not included as they can be inferred from the ego base
features. The traffic features are an original contribution, as
the reviewed literature uses simple features such as headway
to represent traffic, but the inclusion of more comprehensive
features aims to illustrate how beneficial they can be.

D. Rule Features

The rule features are indicators for the legal actions in
the current lane. They encode whether it is legal to go
left, go right, go straight, and if the lane is a turning
bay. This information would be available to vehicles with
access to detailed road maps, but is difficult to extract from
raw images. We hypothesize that these features will have a
significant impact on the actions a car takes in almost every
situation, which is why they are included despite the relative
expense of adding them to an actual driving system.



TABLE I: Discretization bin edges for continuous variables.

Variable Bin Edges Unit

distance 0, 5, 25, 100, 500 ft
speed 0, 0.5, 20, 40, 60 ft/s
acceleration −20,−5,−0.5, 0.5, 5, 20 ft/s2

V. MODELS

This section details the intent classification models whose
performance is compared in Section VI. Models were trained
via maximum likelihood estimation unless otherwise noted.
All neural networks were trained in Tensorflow[15]. Both
support vector machines and naive Bayes classifiers were
tested but omitted from the final results due to their poor
performance.

A. Marginal Baseline (MA)

A marginal distribution over the predicted actions provides
a baseline for subsequent approaches. It is defined purely by
the frequency of each action taken in the training dataset.

B. Conditional Probability Table (CPT)

A conditional probability table represents a conditional
probability distribution between discrete features and a dis-
crete target variable. They are commonly used in Bayesian
networks and their theory is well-established [16].

The parameters for a CPT with a given set of features
can be obtained from frequency statistics extracted from a
training dataset. Training a CPT model requires choosing
the incorporated features. Greedy hill climbing was used
along with the K2 parameter prior, which assigns a baseline
uniform distribution over the CPT statistics [16].

Use of the CPT model required continuous features to be
discretized. The features were discretized by hand, using bin
edges designed to balance a low number of bins, consistent
distribution, and bin importance in order to ensure different
bins represent distinct situations. Discretization bin edges
for each variable are shown in Table I. Orientation was
discretized into 7 uniform width bins.

C. Multilayer Perceptron (MLP)

Two models based on neural networks are included. The
first, the multilayer perceptron, is a feedforward neural
network which passes the input features through a series of
affine transformations separated by rectified linear units [17].
The final layer has one entry for each action, and a softmax
layer produces the unnormalized parameters to a categorical
distribution over the intersection action.

The MLP has two hidden layers, 128 units each. Models
were trained with ADAGRAD [18] using a batch size of
1024. The remaining parameters in the TensorFlow DNN
classifier were left at default.

D. Recurrent Neural Network (RNN)

Recurrent neural networks maintain a hidden state that
changes over time, allowing them to learn to identify and
remember important events that affect future predictions.

Driving is a sequential task, and a recurrent model may
benefit from information gathered over multiple timesteps.
Long short term memory units (LSTMs) are one popular
type of recurrent neural network that can retain information
over long periods [19], and have been successfully used in
driver behavior modeling [20].

Three LSTMs of varying complexity are evaluated: the
R128×2, R128×3, and R256×2 models, where Rn × m
indicates a model with m hidden layers of n units each.
Model size is varied to show the effect of layer and unit
count.

All three LSTM models were trained with the same hyper-
parameters. The forget bias was 1, the weight initialization
scale was 0.05, the learning rate and decay were 1 and 0.8,
and the maximum gradient norm was 5. All LSTMs were
trained with a batch size of 10 and with traces of length 20.

VI. EXPERIMENTS

The following experiments evaluate both the models and
the features used to train them. The models are evaluated
over all intersections and all features in Section VI-A,
generalization to new intersections is investigated in Sec-
tion VI-B, and prediction performance as a function of the
distance from the intersection is evaluated in Section VI-C.
Feature selection is used to determine feature importance in
Section VI-D.

A. Overall Model Performance

All models were trained on the full feature set using 9-
fold cross validation with folds split across intersections.
The mean cross-validated accuracy and log likelihood was
extracted for each model. The accuracy measures the fraction
of correct predictions on withheld data, and is an indicator
of absolute predictive performance. The likelihood measures
the probability assigned to the correct prediction, and thus
provides a measure of confidence. The mean for each metric
over all folds is reported in Fig. 3. The results presented are
micro-averages: each prediction is weighted equally. Micro-
averages contrast with macro-averages, where each cross-
validation fold would be weighted equally.

The deep learning models exhibit the highest overall
mean accuracy and the lowest overall variation in accuracy.
The recurrent neural networks outperform the MLP with
higher overall mean accuracy. The remaining models have
much lower minimum accuracies, suggesting less ability to
generalize to certain intersections. The best model appears to
be R128×2, which has the highest mean values and lowest
variances among RNNs.

The recurrent neural networks tend to exhibit the best
overall mean likelihood, while having typical amounts of
variation in likelihood. This performance stands in stark
contrast to the MLP, which has the worst likelihood in both
average and variation, despite outperforming the baselines
in terms of overall accuracy. The poor performance suggests
that the MLP assigns very low likelihoods to a few correct
actions. The remaining models have similar likelihoods as the
RNNs, although the best model remains the R128×2, which
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Fig. 3: The mean cross-validated accuracy and log-likelihood for each
candidate model trained on all features. Error bars indicate maximum and
minimum observed scores among all 9 folds.
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Fig. 4: The confusion matrix for R128×2 model over all intersections for
predictions within 6.1 m (20 ft) of the intersection. Large imbalances among
the classes are an inherent difficulty.

has the highest mean values and lowest variances among all
the models for likelihood.

A confusion matrix for the R128×2 model for samples
close to the intersection is given in Fig. 4. The class im-
balances is clearly shown, with passing straight through the
intersection occurring 74% of the time, left 21%, and right
only about 5% of the time. This imbalance leads to relatively
high accuracy scores despite poor precision in predicting
right turns, which is present in all models.

B. Generalization between Intersections

The results from the previous section can be inspected
on a per-intersection basis, and are shown in Table II and
Table III. The primary trend is the variability in perfor-
mance according to the withheld intersection. In particular,
intersection 3 has the worst performance. It is the busiest
intersection, accounting for about a quarter of all of the
data points. The simplest RNN, at 128 units and two layers,
almost doubles the performance accuracy on this intersection.
Furthermore, fewer than half of the cars continue straight
through intersection 3, whereas other intersections are much
more dominated by the action of continuing straight. The
next most complicated intersection, intersection 6, shows
a similar increase in accuracy for the recurrent models
over the baselines. This pattern demonstrates the modeling

performance of LSTMs.
Secondly, the results are relatively consistent across three

and four-way intersections. Intersections 1 and 8 are three-
way, but the performance on them is very similar to the other
intersections, strengthening the claim that this approach is
generalizable over intersection layouts.

Finally, the complicated recurrent models tended to be
best more often in particular folds, but also had some of
the lowest results in certain folds. The increased model
complexity combined with the variable performance suggests
some degree of overfitting. By using fewer units and layers,
the R128×2 model maintained the advantages of learning
long-term dependencies while limiting the model complexity
and keeping it simple. This hypothesis is further supported
by the outcomes described in Section VI-D, where R128×2
utilized fewer features than the more complicated models,
allowing it to learn more general trends.

C. Distance Experiments

A third experiment investigates the relationship between
model performance and distance to the intersection. The
results show that the prediction accuracy is relatively con-
stant over the distance, with no major changes in prediction
accuracy. This finding is consistent with major trends being
largely determined by the lane one is in. Nevertheless,
the prediction variance increases with distance from the
intersection.

Figure 5 shows the general trends for model accuracy, with
variance included. It shows how the baselines have much
higher variance than the neural networks, and how the accu-
racy decreases slightly further away from the intersection.

Figure 6 shows the performance versus distance for in-
tersection 3. Intersection 3 is the busiest intersection and
yielded the worst performance when withheld. It reinforces
the trends seen in Fig. 5 and highlights the performance
discrepancy between the baselines and the neural networks.

D. Feature Selection

The features selected by the models provide insight into
what information is important to making good predictions.
Models were trained using all available features, but in this
post-test analysis forward feature search determines which
features contributed to increases in accuracy for the model.
In forward feature search, a feature set is built up by
incrementally adding the feature which leads to the greatest
improvement in accuracy. There are some caveats to this
method: increases in accuracy may not lead to better overall
performance, and the greedy method may miss the best set
of features.

The most important features were the rule-based features,
based on the number of times they were selected by all
models. The ego vehicle headway also appeared in the top
five features, along with the distance to the intersection. A
variety of other features were also significant, notably the
historical headway, and a handful of traffic features.

The best performing model, R128×2, only used three
features when tested on the most complicated intersection:



TABLE II: Accuracies for over all folds with specified held-out intersections.

Model 1 2 3 4 5 6 7 8 9

Marginal 0.914 0.956 0.480 0.946 0.868 0.738 0.929 0.804 0.837
CPT 0.923 0.509 0.438 0.945 0.868 0.824 0.819 0.856 0.837
MLP 0.920 0.910 0.669 0.871 0.848 0.793 0.743 0.915 0.714
R128×2 0.925 0.955 0.808 0.897 0.868 0.772 0.826 0.888 0.847
R128×3 0.925 0.924 0.699 0.940 0.869 0.802 0.849 0.942 0.865
R256×2 0.926 0.957 0.834 0.940 0.833 0.778 0.599 0.853 0.861

TABLE III: Log Likelihood over all folds with specified held-out intersections.

Model 1 2 3 4 5 6 7 8 9

Marginal −0.563 −0.439 −1.446 −0.408 −0.501 −0.815 −0.487 −0.611 −1.787
CPT −0.722 −0.668 −1.192 −1.101 −0.833 −0.441 −0.622 −0.367 −0.483
MLP −0.906 −0.942 −5.375 −0.698 −1.922 −1.620 −2.114 −0.684 −1.754
R128×2 −0.346 −0.234 −0.904 −0.381 −0.538 −0.902 −1.146 −0.335 −0.631
R128×3 −0.429 −0.307 −1.322 −0.275 −0.746 −0.810 −1.105 −0.331 −0.624
R256×2 −0.380 −0.186 −0.965 −0.340 −0.576 −0.750 −2.406 −0.363 −0.686

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

0.00

0.05

0.10

V
ar

ia
nc

e

Marginal CPT MLP
R128×2 R128×3 R256×2

0 25 50 75 100
0.00

0.10

0.20

Distance [m]

D
at

a
A

m
ou

nt

Fig. 5: Mean prediction accuracy and variance versus dis-
tance to the intersection. Performance is based on distance
averaged over all intersections.

intersection 3. It used the rules for continuing straight,
turning right, and whether or not the lane was a turning
bay. The prominence of these features indicates that they
are extremely import for future work, supporting our initial
hypothesis that the rules based features would be critical for
achieving exceptional performance.

Another result that arose from examining the features
selected by the models is that the MLP was able to capitalize
on many more features than the other models. Most models
utilized less than 10 features, but the MLP was using
approximately 20. However, this did not lead to better scores,
most likely due to overfitting on the training set. A likely
cause for why the LSTMs did not use so many features is
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Fig. 6: Prediction accuracy versus distance to intersection 3,
the busiest intersection yielding the worst performance when
withheld.

that their recurrent nature allowed for many of the historical
features to be redundant and thus not contribute to better
performance.

VII. CONCLUSION AND FUTURE WORK

LSTMs are shown to outperform other models in the
supervised classification task of predicting the action a
human will take at an upcoming intersection. In the most
interesting case, that of a high-throughput intersection, the
LSTMs excel relative to the other models. Averaged across
all intersections, the best model achieves over 85% accuracy,
whereas prior work by Tang, Khokhar, and Gupta on a
restricted class of intersections achieved approximately 90%
accuracy [2].

Future work can extend this approach to include other
features, including traffic signal information, road markings,
and vehicle types. This work can be adopted to intention pre-
diction in other contexts, including predicting lane changes
or exiting on highways. A primary difficulty during model



training was the heavily unbalanced class labels. Future work
can use simulated data to balance the classes or use weight-
ing methods to synthetically balance the class ratios. As more
data becomes available it will be possible to test these models
on a more diverse range of intersections, including smaller
roads where the road rules are less dominant features.
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