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Analysis of Recurrent Neural Networks for
Probabilistic Modeling of Driver Behavior

Jeremy Morton, Tim A. Wheeler, and Mykel J. Kochenderfer

Abstract—The validity of any traffic simulation model depends
on its ability to generate representative driver acceleration
profiles. This work studies the effectiveness of recurrent neural
networks in predicting acceleration distributions for car-following
on highways. Long short-term memory recurrent networks are
trained and used to propagate simulated vehicle trajectories
over ten-second horizons. On the basis of several performance
metrics, the recurrent networks are shown to generally match
or outperform baseline methods in replicating driver behavior,
including smoothness and oscillatory characteristics present in
real trajectories. Our study reveals that the strong performance
is due to the ability of the recurrent network to identify recent
trends in the ego-vehicle’s state, and recurrent networks are
shown to perform as well as feedforward networks with longer
histories as inputs.

I. INTRODUCTION

Comprehensive risk assessments are required for automotive
safety systems before their release. Conducting such studies
often requires real-world driving tests, which are expensive,
time consuming, and subject to safety constraints. Simulation
allows for testing a wide range of scenarios in a fraction of
the time, at marginal cost, and at no risk of injury, but must
employ accurate behavior models for traffic participants in
order to produce useful evaluation metrics. It is critical that
the simulated behavior be as representative of actual driving
as possible; otherwise, the risk associated with a safety system
could be significantly over- or underestimated.

Many methods have been proposed for learning micro-
scopic driving models from real-world data. A large body
of research exists for car-following models using fixed-form
distributions [1]–[4] that rely on specific response equations. In
particular, Bonsall, Liu, and Young highlighted the deficien-
cies in these models, which they attributed to safety-related
assumptions, and argued that parameters ought to be learned
from real-world data [5].

Recent work has sought to automate the construction of
general driver models from data using less restrictive prob-
abilistic models. Agamennoni, Nieto, and Nebot developed a
softmax classifier over contextual features to identify a context
class with an associated Gaussian acceleration distribution [6].
Gindele, Brechtel, and Dillmann constructed a Gaussian dis-
tribution over acceleration and turn-rate using random forests
over contextual features [7]. Wheeler, Robbel, and Kochen-
derfer used Bayesian networks to generate predictions over
acceleration and turn-rate for free-flow, following, and lane-
change context classes [8]. Damerow and Eggert planned
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using a probabilistic risk map generated using the foresighted
driver model [9], [10]. Bahram, Hubmann, Lawitzky, et al.
combined spatio-temporal cost maps to predict intentions with
Bayesian networks for classifying candidate maneuvers with
intention-unaware local features [11]. These methods produce
distributions over future actions, which can be sampled to
propagate driving scenes in simulation, but rely on hand-
selected features that are limited in their ability to capture
nuanced temporal and spatial characteristics.

Deep neural networks have recently gained widespread
popularity as universal function approximators, capable of
learning robust hierarchical features from complicated in-
puts [12], [13]. Deep neural networks have outperformed
traditional state-of-the-art methods in fields as diverse as image
classification [14] and natural language processing [15]. Their
efficiency, effectiveness, and flexibility make deep neural net-
works highly attractive. Prior applications of neural networks
to automotive behavior modeling include maximum likelihood
prediction in car-following contexts [16]–[19], lateral position
prediction [20], and maneuver classification to provide inputs
to a hidden Markov model [21].

This paper describes neural car-following models developed
based on naturalistic driving data and outlines a general
methodology for constructing such models. The human driving
models produce distributions over actions rather than max-
imum likelihood predictions, allowing for stochastic predic-
tions and the evaluation of statistical risk. Long short-term
memory (LSTM) recurrent neural networks [22] are compared
to feedforward networks and traditional baselines. The LSTM
architecture can automatically learn relevant spatial and tem-
poral features, reducing the need to record and input long se-
quences. The resulting networks form generative distributions
over driver accelerations and are used to propagate simulated
trajectories. Trajectories generated from the resulting models
are compared using a wide range of metrics that quantify their
modeling performance and oscillatory characteristics. Finally,
the spatial and temporal features learned by the neural network
models are investigated, and it is found that LSTM networks
rely largely on very recent information. It is shown that, if
the input to a feedforward network is expanded to incorporate
state information from multiple time steps, it is able to match
the performance of LSTM networks.

II. REVIEW OF CAR-FOLLOWING MODELS

Car-following models capture the longitudinal interaction
between a vehicle and the vehicle(s) before it. They are critical
components of traffic simulation models, and model variations
can significantly impact the evaluation of system performance.
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Car-following models fall into two categories, fixed-form
models with a small number of parameters and generalizable
models with a large number of parameters. The former were
originally developed for the analysis of emergent macroscopic
traffic patterns, while the latter are used for learning vehicle-
specific microscopic behavior.

A. Fixed-Form Car-Following Models

Brackstone and McDonald review the five primary cate-
gories of traditional fixed-form behavior models: the Gazis-
Herman Rothery model, the collision avoidance model, lin-
ear models, psychophysical models, and fuzzy logic-based
models [23]. The Gazis-Herman Rothery [1] class of models
predicts the vehicle acceleration based on the vehicle’s current
speed s(t), the relative speed r(t), the distance headway d(t),
and includes an estimated driver reaction time T :

a(t) = α1s
α2(t)

r(t− T )

dα3(t− T )
, (1)

where t is the time at which predictions are made. The driver
reaction time is typically on the order of 0.8 to 2s [5],
and the three parameters α1:3 are constants that must be
calibrated against a dataset. The values for α2 and α3 can
vary significantly depending on the dataset [23].

The collision avoidance model predicts the safe following
distance required to avoid frontal collisions using similar
features and several calibration constants [24]–[26]. The linear
model of Helly extends the Gazis-Herman Rothery model with
past accelerations and has five calibration constants, β1:5:

a(t) = β1r(t− T )

+ β2 [d(t− T ) + β3 + β4s(t− T ) + β5a(t− T )] .
(2)

These first three classes assume very specific forms for the
driver response behavior. They are limited in their ability to
generalize across contexts and datasets without recalibration.

Concerns about generalization motivated the construction of
the last two categories, the psychophysical and fuzzy-logic-
based models. Psychophysical car-following models assume
that drivers will react once a certain threshold is met [28].
These thresholds are often defined in terms of relative dis-
tances or headways, and once exceeded, cause the modeled
driver to decelerate or accelerate until the relative speed meets
the desired zero-difference. The inclusion of several thresholds
allows for more expressive models, but the model is still
limited by the assumed form of the resulting response.

Fuzzy-based-logic models, based on fuzzy-set theory, have
been applied to the Gazis-Herman Rothery model [29]. These
techniques allow one of several parameterizations of the model
to be identified based on natural language-based driving rules.
Fuzzy inference produces a fuzzy output set, which parameter-
izes the model in a probabilistic fashion. The primary difficulty
with fuzzy logic models is the selection of membership
functions [2].

The intelligent driver model (IDM) is a more recent fixed-
form car-following model that produces collision-free trajec-
tories [30]. The IDM generates acceleration predictions based

on the idea that each driver balances the desire of a certain
speed with the desire to maintain a safe distance to the lead
vehicle. The relevant equations are:

ddes = dmin + τ · s(t)− s(t) · r(t)
2 ·

√
amax · bpref

(3)

a(t) = amax

[
1−

(
s(t)

smax

)4

−
(
ddes
d(t)

)2
]

(4)

where ddes is the desired distance to the lead vehicle, dmin

is the minimum distance to the lead vehicle that the driver
will tolerate, τ is the desired time headway, amax is the ego-
vehicle’s maximum acceleration ability, bpref is the preferred
deceleration, and smax is the driver’s desired free-flow speed.

B. Generalizable Car-Following Models

Traditional fixed-form behavior models make assumptions
about the driver responses. Recent research has sought to
overcome these restrictions using more general models. Angk-
ititrakul, Ryuta, Wakita, et al. evaluate the performance
of Gaussian mixture regression and piecewise autoregressive
exogenous models for car-following, but they do not compare
against traditional fixed-form models [31]. Panwai and Dia
developed car-following models using two-layer feedforward
neural networks accepting relative speed, relative distance,
desired speed, and current speed as inputs [17]. Their models
were shown to outperform a wide variety of traditional fixed-
form models in micro- and macroscopic evaluation, but since
the targeted application was macroscopic traffic simulation
and not prediction, they did not provide performance results
in the absence of measurements over the prediction period.
Both Gaussian mixture regression and neural network models
were further investigated by Lefèvre, Sun, Bajcsy, et al., who
implemented the models as maximum-likelihood acceleration
predictors and compared against traditional baselines [19]. The
Gaussian mixture regression and feedforward neural network
models were found to produce comparable results. None of
these models used recurrent neural networks.

III. PROBLEM DEFINITION

We seek to produce probability distributions over acceler-
ations in one-dimensional driving scenes. These models only
consider the ego-vehicle, whose actions are being predicted,
and the lead vehicle. For a given ego-lead vehicle configura-
tion, the system state ~x(t) at time t is represented by:

~x(t) = 〈d(t), r(t), s(t), a(t)〉 (5)

where d(t) is the headway distance between the vehicles,
r(t) is their relative speed difference, s(t) is the ego-vehicle
speed, and a(t) is the ego-vehicle acceleration. A human
behavior model maps a state history to a distribution over the
acceleration in the next time-step, from which samples can be
drawn to propagate simulated trajectories. Given a sampled
ego acceleration at the next time step, a(t + ∆t), the ego
position and speed can be updated according to:
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s(t+∆t) = s(t) + a(t+∆t)∆t

y(t+∆t) = y(t) + s(t+∆t)∆t
(6)

where y is the absolute longitudinal position of the ego-
vehicle. The ego state can then be updated by propagating the
lead vehicle according to its true trajectory. The underlying
model implementation can take many forms. In this work we
use neural networks, as described in the next section.

IV. NEURAL DRIVING MODELS

Neural networks are universal function approximators that
traditionally consist of an input layer, multiple hidden layers,
and an output layer. Vector-valued inputs are fed into the
input layer and are manipulated by a set of linear transforms
and nonlinear activations as they traverse the hidden layers
to the output layer. Here, the network outputs parameterize
probability distributions over the acceleration in the next time-
step.

Neural networks are typically trained with stochastic
gradient-descent to optimize a scalar loss function [32]. In
the context of driver modeling, this loss function is the
predicted log-likelihood of the true vehicle behavior. Several
hyperparameters, including learning rate and regularization
strength, must be chosen to produce high-quality networks.

Neural networks are very efficient to use once trained.
The resulting models permit fast-time Monte Carlo simulation
but are sophisticated enough to produce physically realistic
dynamics. Recurrent neural networks extend traditional feed-
forward networks with internal cycles. This provides recurrent
neural networks with an internal state that is capable of
tracking sequences of information and learning relevant tem-
poral features. The long short-term memory (LSTM) neural
network architecture is widely used due to its resistance to
the vanishing gradient problem [22], [33].

All networks were trained to predict parameters for distri-
butions over future acceleration values given the vehicle state,
~x(t). Ten-fold cross-validation was performed and extracted
metrics were averaged across folds. The training data was
divided into twelve-second trajectory segments, the first two
seconds of which were used to initialize the internal state
of the LSTM networks. All networks were implemented in
Torch7 [34] based on Karpathy’s char-rnn package [35] and
Zaremba’s LSTM implementation [36].

Two forms for the parameterized distribution family were
considered: Gaussian mixture and piecewise uniform. The
network structures and parameterized distribution families are
shown in Fig. 1.

A. Gaussian Mixture
The first parameterized acceleration distribution family is

the Gaussian mixture:

p(x) =

n∑
i=1

wi N (x | µi, σ
2
i ). (7)

where wi, µi, and σi are the weight, mean, and standard
deviation for the ith mixture component. The neural net-
work’s output layer produces the component weights, means,

and standard deviations. The weight parameters are obtained
through softmax activation to ensure they sum to one, and
exponential activations on the standard deviations ensure they
are positive. The outputs for the component means are not
passed through any activation because they can theoretically
take on any value. This approach was initially proposed by
Bishop [37], and has been successfully applied in fields such
as speech synthesis [38].

B. Piecewise Uniform

The second form for the parameterized acceleration distri-
bution is the piecewise uniform distribution. The domain over
observed acceleration values is discretized into a finite number
of bins. In this case, the network’s output layer represents
probabilities that the next acceleration value will fall within
each bin. A probability distribution is produced by performing
a softmax activation over the output layer:

P (bini | x) =
ezi∑n
j=1 e

zj
, (8)

where zi is the output corresponding to the ith bin and n
is the number of bins. The loss function is the Negative
Log-Likelihood criterion, evaluated according to the predicted
probability density associated with the true acceleration value:

p(a | x) = p(a | bin)P (bin | x), (9)

where the probability density is uniform within each bin. To
sample from the piecewise uniform distribution, a bin can be
selected based on the generated probabilities, and an exact
acceleration value can be sampled from a uniform distribution
within the bin.

V. MODELS

Four neural models and one baseline fixed-form model were
implemented. All models take states as inputs and produce
distributions over vehicle accelerations over the next time-step.

The feedforward Gaussian mixture network (FF) maps the
current state ~x(t) to a Gaussian mixture. A second feedforward
network (FF×4) also produces a Gaussian mixture, but it
takes the four most recent states as input, and thus has more
information available with which to make predictions. Two
LSTM models were implemented, one that outputs a Gaussian
mixture (LSTM GM) and one that outputs a piecewise uniform
distribution (LSTM PU). Both take only the current state ~x(t)
and must learn a hidden state representation.

The expressiveness of neural networks typically scales with
their depth and number of hidden units. This enhanced ex-
pressivity can lead to overfitting and is often associated with a
large computational cost [39]. These competing considerations
must be weighed when selecting a network architecture. In
this work, each network was given the same architecture,
consisting of two hidden layers with 128 units. In the recurrent
networks, the hidden units are LSTM cells, while in the
feedforward networks the hidden units apply affine transforms
followed by ReLU activations [40]. The experimental section
further discusses the hyperparameters used for each network.
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Fig. 1: Network structures and resulting distribution families.

128m 374.9m
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Fig. 2: Data source highway schematic for the NGSIM Interstate 80 dataset

TABLE I: Learned Parameters for the Intelligent Driver Model

dmin T bpref smax amax

5.249 m 0.918 s 3.811 m/s2 17.837 m/s 0.758 m/s2

The intelligent driver model (IDM) was included to illustrate
the difference between fixed-form models and generalizable
models. Lefèvre, Sun, Bajcsy, et al. showed that the IDM
outperforms several other low-parameter car-following models
in predicting vehicle speeds over various time horizons [19].
The Levenberg-Marquardt algorithm [41] was used to learn the
remaining IDM parameters through a nonlinear least-squares
fit. These parameters are summarized in Table I. It should be
noted that the IDM performance would likely improve if these
parameters were learned for individual drivers, but this was not
done in this study due to limited data.

VI. METHODOLOGY

The five models described above are evaluated to compare
their ability to predict distributions over accelerations and
produce realistic trajectories. This section describes the dataset
and methodologies used in the experiments.

A. Dataset

Experiments used on the Next Generation Simulation
(NGSIM) dataset for Interstate 80, which contains 15 minutes
of vehicle trajectory data collected using synchronized digital

video cameras providing the vehicle lane positions and veloc-
ities over time at 10 Hz [42]. The Interstate 80 dataset covers
an area in the San Francisco Bay Area approximately 500 m
in length with six mainline lanes, including a high-occupancy
vehicle lane and an onramp, as shown in Fig. 2. Traffic density
transitions from uncongested to full congestion and exhibits a
high degree of vehicle interaction as vehicles merge on and off
the highway and must navigate in the nearly-congested flow.
The dataset was collected by the Next-Generation Simulation
program in 2005 to facilitate automotive research and is
publicly available.

The NGSIM dataset includes vehicle positions and ve-
locities in the lane-relative frame. We use the reconstructed
NGSIM I-80 dataset from 4:00 to 4:15 due to its corrected
kinematic inconsistencies, extreme acceleration values, and
switching vehicle IDs [43]–[46]. All training was conducted on
zero-centered, normalized data segmented into twelve-second
trajectories, two seconds of which were used to initialize the
LSTM networks.

B. Hyperparameter Selection

Neural networks are very sensitive to the training hyperpa-
rameters, which include the number and size of the layers, the
learning rate, and learning rate decay. For this work, several
hyperparameter settings were tested, and selections were made
according to the performance achieved by trained models on
a validation set. In all networks, a learning rate of 4 × 10−3

was used and was cut in half every three training epochs.
The Gaussian mixture networks, both LSTM and feedforward,
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consist of two 128-neuron hidden layers and a two-component
Gaussian mixture in the output layer.

The piecewise uniform network architecture consists of two
hidden layers containing 128 neurons and an output layer
containing 160 neurons. The neurons in the output layer
correspond to bins in the predicted acceleration distribution
with the range of possible acceleration values spanning −5 to
3 m/s2. Constant width and constant frequency bin boundaries
were averaged to find the bin sizes in the output distribution,
which allows for finer discretization near common acceleration
values, while maintaining reasonable bin sizes near the ex-
tremes. Smaller output layers were tested, but required coarser
discretization, leading to unrealistic acceleration jumps when
samples were drawn from wider bins. The performance of
both LSTM networks was found to improve when a dropout
of 25-percent was applied during training. Dropout is a form
of regularization that helps prevent overfitting [39].

Once trained, each network was used to generate simulated
trajectories. For each trajectory in the training set, the networks
were supplied with two seconds of inputs corresponding to
true state values, and then ten-seconds worth of simulated
trajectories were sequentially sampled. The trajectories were
generated through iteratively sampling from the output accel-
eration distributions and updating the state values using the
kinematic relations in Eq. (6). Fifty simulated trajectories were
generated for each true trajectory in the following analysis.

C. Cross-Validation
To assess how the models generalize to unseen data, we

used 10-fold cross-validation. The complete set of trajectories
was partitioned into 10 folds, of which one fold served as
the validation set and the remaining nine folds were used
to train each of the models. This process was repeated 10
times, allowing each fold to serve as the validation set. The
performance of each method was then computed by averaging
scores across all ten folds on the basis of several metrics.

VII. EXPERIMENTS

After training, we assess whether our learned models are
capable of generating artificial trajectories that exhibit the
same characteristics as real trajectories. This similarity can
be evaluated through quantitative criteria such as predictive
accuracy and emergent behavior, as well as qualitative criteria
such as smoothness. This section outlines several metrics to
quantify this similarity and discusses the relative performance
of each method. All propagation was at 10Hz.

A. Root Weighted Square Error
The predictive accuracy of a method can be measured using

the discrepancy between the predicted speed values and the
true values over various time horizons. The root-weighted
square error (RWSE) captures the deviation of a model’s
probability mass from real-world trajectories [47]. The RWSE
for m trajectories for predicted variable v over horizon H is:

RWSE =

√√√√ 1

m

m∑
i=1

∫ ∞

−∞
p(v) ·

(
v
(i)
H − v

)2

dv, (10)

1 2 3 4 5

1

2

3

4

5

Time Horizon (s)

R
W

SE
(m

/s
)

FF FF×4 LSTM GM LSTM PU
IDM CS CA

Fig. 3: Mean root-weighted square error in velocity predictions
over different horizons. Error bars are omitted for clarity, but
the margins are relatively small.

where v
(i)
H is the true value in the ith trajectory at time horizon

H and p(v) is the modeled density. Because the integral is
difficult to evaluate directly, we estimated it with n = 50
simulated traces per recorded trajectory:

RWSE =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(
v
(i)
H − v̂

(i,j)
H

)2

, (11)

where v̂
(i,j)
H is the simulated variable under sample j for the

ith trajectory at time horizon H . The intelligent driver model
produces point estimates, in which case the RWSE reduces to
the root mean square error.

Figure 3 shows the RWSE values for each model over
prediction horizons between 1 and 5 seconds. The perfor-
mance of constant speed (CS) and constant acceleration (CA)
prediction methods are included as baselines. The Gaussian
mixture methods achieve the best performance according to
this metric, outperforming all other methods over all time
horizons. The feedforward network with multiple-state input
slightly outperforms the other methods, indicating that the
acceleration distributions it learns to predict are least likely
to introduce error into speed estimates. IDM outperforms
the piecewise uniform method over time horizons less than
four seconds, and accumulates less error than constant speed
predictions over all time horizons.

B. Negative State Values

A second method for assessing model performance is to
look for unrealistic behaviors in simulated trajectories. Two
such values are negative distance headways and speed values,
corresponding to collisions and vehicles in reverse, respec-
tively. While there is a nonzero probability that acceleration
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Fig. 4: Frequency of negative state values in generated trajec-
tories. Error bars indicate standard deviation across folds.

values will be sampled from the neural models that lead to
such negative state values, these events should be rare.

Figure 4 summarizes the frequency with which these values
are observed in simulated trajectories for each model. The val-
ues depicted are the mean values obtained over ten-fold cross-
validation, with error bars indicating one standard deviation
about the mean. Negative state values are observed in all neural
models to an extent, and are most common in the trajectories
generated by the piecewise uniform network. Interestingly,
the feedforward models have fewer negative state values than
both LSTM models. The IDM produces no collisions and few
negative speed values in accordance with its design.

C. Emergent Properties

The similarity of generated trajectories to true trajectories
can also be measured by comparing the distributions over
emergent properties in real and simulated trajectories. These
quantities can be discretized into bins, and the distributions
over these values can be approximated as piecewise uniform.
From these empirical distributions, the Kullback-Leibler di-
vergence can be evaluated. These values are shown in Fig. 5
for the speed, acceleration, jerk, and inverse time-to-collision
(TTCi) [48], with low values indicating similarity. Time-to-
collision quantifies the ratio of range to range-rate for vehicles
in a car-following context. Its inverse is often used to avoid
singularities when the relative speed approaches zero.

According to these metrics, the FF×4 and LSTM GM
networks are superior to the other models and achieve nearly
equal performance. The feedforward network with a single-
state input generates trajectories with the least realistic accel-
eration and jerk profiles among the neural models. In addition,
there is a large discrepancy between the IDM empirical
acceleration and jerk distributions and the true distributions,
largely due to the artificially smooth nature of its trajectories.

The feedforward network with single-state input generates
the same output as the FF×4 and LSTM GM models and

FF FF×4 LSTM
GM

LSTM
PU

IDM
0

0.4

0.8

1.2

1.6

Speed Acceleration Jerk TTCi

Fig. 5: Summary of KL divergence values for trajectories
generated using each model.

TABLE II: Jerk Sign Inversions per Trajectory

True FF FF×4 LSTM
GM

LSTM
PU IDM

12.51
± 0.83

47.18
± 0.94

14.05
± 0.95

14.02
± 0.38

17.45
± 0.44

1.76
± 0.06

could be expected to share their advantages. However, this is
not the case, as its acceleration and jerk distributions are biased
toward values that are small in magnitude. In fact, many of
its trajectories exhibit extended stretches where the predicted
acceleration values stay close to zero. Predicting that a driver’s
acceleration will remain near zero if it was close to zero at
the previous time step is a reasonable strategy if no other
information is available, but it illustrates a clear shortcoming of
the feedforward network: it cannot observe and follow trends.

Figure 6 shows examples of real trajectories and correspond-
ing artificial trajectories. The LSTM trajectories are noticeably
smoother than the feedforward trajectories, which qualitatively
illustrates the advantage of having access to state values
from multiple time steps. This reflects what we would expect
in realistic driving scenarios where the interactions between
vehicles are more complicated than the car-following scenarios
studied in this paper. In lane changes, for example, we would
expect the acceleration of the ego-vehicle to change gradually
to achieve a desired following distance instead of jumping
instantaneously. Models without access to information from
multiple time steps are less adept at accounting for these more
complicated phenomena, and therefore have trouble capturing
the smooth, oscillatory nature of the true trajectories.

D. Jerk Sign Inversions

The similarity between the smoothness and oscillatory be-
havior of the true and simulated trajectories can be quantified
by the average number of jerk sign inversions per trajectory.
Very smooth trajectories will have few jerk sign inversions,
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Fig. 6: Visual comparison of simulated and real trajectories. Trajectories created by the Piecewise Uniform network and the
Feedforward network with four-state input are qualitatively similar to those generated by the LSTM Gaussian Mixture network.

whereas highly oscillating trajectories will have many. These
quantities are listed in Table II.

As expected, the number of sign inversions in FF trajectories
far exceeds the number of sign inversions in true trajectories.
IDM trajectories, on the other hand, exhibit far fewer sign
inversions than the real trajectories. The LSTM and FF×4
networks produce the most realistic jerk sign inversion counts.

The feedforward networks can be viewed as approximations
to recurrent networks, with the ability to remember infor-
mation over timescales equivalent to the number of states
contained in their input. The results above suggest that knowl-
edge of only one previous state is insufficient for the task
of generating smooth acceleration profiles, but the expansion
of the input to include just four previous states allows the
feedforward network to match the performance of the LSTM
networks. Hence, recurrent networks learn to track only very
recent information in creating their acceleration predictions.

VIII. UNDERSTANDING NETWORK BEHAVIOR

In addition to evaluating the predictive performance of the
LSTM networks, it is also important to understand which
spatial and temporal features they track in order to generate
predictions. Figure 7 illustrates some of the reactions that
individual network neurons have in response to input state

values. These activations exhibit responses to both the state
values themselves, and the temporal variation in state values.

Neuron activation is most affected by the input acceleration,
and knowing a previous time history of acceleration values
is very important in predicting future acceleration values.
Presumably, though, the network should also use the other
inputs. Figure 8 illustrates an experiment that was devised in
order to determine whether this is the case.

As mentioned previously, before propagating simulated tra-
jectories, the networks are supplied with two seconds of state
values from real trajectories. In this experiment, within a
subset of trajectories contained in the first validation set, the d
and s values were translated independently such that the lowest
value over the two seconds preceding propagation corresponds
to some varied minimum value. By moving these state values
closer to zero, the network is forced to generate accelerations
that prevent the state values from going negative.

These experiments were performed using a Gaussian mix-
ture LSTM network and minimum state values varied between
0 and 5 in increments of 0.5. The fraction of negative headway
distance, d, and speed, s, values were extracted from the
resulting trajectories in order to quantify the effect of the
shifted state inputs. These metrics are shown in Fig. 9.

The network does not strongly react to small d-values, with
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a delay, which is evidence that the network remembers previous acceleration values. In (b), the neuron activations follow the
jerk values when the acceleration is positive. Because jerk values are not passed into the network, they must be found through
the temporal variation in acceleration values. In (c), the neuron activates strongly due to an abrupt change in relative speed.
These jumps are due to lane changes by vehicles ahead of the ego-vehicle. In (d), the neuron saturates with a sign consistent
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Fig. 8: Illustration of the shift in primed state values. In this
case, the distance to lead vehicle is shifted such that the
minimum value is 5 meters.

a near-monotonic decay in performance as the minimum state
value is decreased. While the mean acceleration values output
by the network do decrease slightly as the minimum d-value is
decreased, the response is small in magnitude and insufficient
to avoid negative d-values in many cases. On the other hand,
the network appears to respond strongly to variations in speed.
It is able to generate the accelerations needed to avoid negative
speeds. In fact, Fig. 9b. illustrates that the mean acceleration
value in propagated trajectories increases nearly linearly as the

minimum s-value is decreased.
There are a multitude of factors that could contribute to this

discrepancy in network responsiveness. One key source likely
lies in the data used to train the network—around 24% of the
speed values in the dataset are 5 m/s or less, whereas only 1%
of the d values are 5 m or less. This means that the network has
significantly fewer opportunities to learn how human drivers
react to small headway distances. Another contributing factor
could be the relative complexity of the relationship between
acceleration and distance to the lead vehicle. Acceleration has
a direct effect on speed, but its effect on headway distance is
more indirect, as d is also influenced by the ego-vehicle speed
and the behavior of the lead vehicle.

IX. CONCLUSIONS

This study has demonstrated the ability of Long Short-
Term Memory networks to effectively generate predictions for
vehicle acceleration distributions. Networks trained to predict
Gaussian mixture and piecewise uniform distributions over
future acceleration values exhibited performance on par with
or superior to baseline methods as captured by evaluation
metrics such as the RWSE and Kullback-Leibler divergence.
Furthermore, the recurrent neural networks were shown to
generate trajectories that replicate much of the qualitative
behavior that is present in real vehicle trajectories. While the
piecewise uniform network performed reasonably well, the
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Fig. 9: Experimental results for shifted state values. In (a), the fraction of negative state values are shown as the minimum
headway distance and speed are varied. In (b), the mean acceleration value in propagated trajectories is plotted against the
minimum state values. The mean acceleration for trajectories where no shift occurred is represented by the solid line.

Gaussian mixture network demonstrated an advantage in all
respects. Additionally, it was shown that feedforward networks
can closely match, and in some cases slightly exceed, the
performance of LSTM networks, provided they are supplied
with enough information about previous states. Thus, the
LSTM networks seem to rely on recent acceleration trends
in generating their predictions. Finally, a study of network
behavior revealed that the networks respond to both the current
state values and the variation in state values over time.

There are many potential avenues for extending this work.
First, it should be noted that the dataset used for this project is
not representative of all traffic conditions, so further study is
needed to evaluate the neural driving models. The prevalence
of negative state values, especially negative distances to the
lead vehicle, in the propagated neural network trajectories can
be addressed by augmenting the network input with more
features or by augmenting the training data with more trajec-
tories that include small speed or distance headway values. In
addition, this work can be extended to include a 2-dimensional
representation of the local driving scene, which would require
the generation of predictions on both acceleration and turn
rate. This problem should require the identification of even
more complex features, in which case deep recurrent neural
networks may provide greater benefits. The code associated
with this paper is publicly available, and can be found at
https://github.com/sisl/LSTM-acc-predict.
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[19] S. Lefèvre, C. Sun, R. Bajcsy, and C. Laugier, “Comparison of para-
metric and non-parametric approaches for vehicle speed prediction,”
American Control Conference (ACC), pp. 3494–3499, Jun. 2014.

[20] Q. Liu, B. Lathrop, and V. Butakov, “Vehicle lateral position prediction:
A small step towards a comprehensive risk assessment system,” in
IEEE International Conference on Intelligent Transportation Systems
(ITSC), Oct. 2014.

[21] P. Boyraz, M. Acar, and D. Kerr, “Signal modelling and hidden Markov
models for driving manoeuvre recognition and driver fault diagnosis
in an urban road scenario,” in IEEE Intelligent Vehicles Symposium,
2007.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] M. Brackstone and M. McDonald, “Car-following: A historical re-
view,” Transportation Research Part F: Traffic Psychology and Be-
haviour, vol. 2, no. 4, pp. 181–196, 1999.

[24] E Kometani and T Sasaki, “Dynamic behaviour of traffic with a
non-linear spacing-speed relationship,” in Symposium on Traffic Flow
Theory, 1958.

[25] A. D. May, Traffic Flow Fundamentals. Englewood Cliffs, NJ:
Prentice-Hall, 1990.

[26] R. F. Benekohal and J. Treiterer, “CARSIM: Car-following model for
simulation of traffic in normal and stop-and-go conditions,” Trans-
portation Research Record, vol. 1194, pp. 99–111, 1988.

[27] W. Helly, “Simulation of bottlenecks in single-lane traffic flow,” in
Symposium on Traffic Flow Theory, 1959.

[28] R. Michaels, “Perceptual factors in car following,” in International
Symposium on the Theory of Road Traffic Flow, 1963.

[29] S. Kikuchi and P. Chakroborty, Car-following model based on fuzzy
inference system, ser. Transportation Research Record. 1992, vol. 1365,
pp. 82–91.

[30] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical Review
E, vol. 62, no. 2, pp. 1805–1824, 2000.

[31] P. Angkititrakul, T. Ryuta, T. Wakita, K. Takeda, C. Miyajima, and
T. Suzuki, “Evaluation of driver-behavior models in real-world car-
following task,” in IEEE International Conference on Vehicular Elec-
tronics and Safety (ICVES), 2009.

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[33] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained
handwriting recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 5, pp. 855–868, 2009.

[34] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-
like environment for machine learning,” in BigLearn, NIPS Workshop,
2011.

[35] A. Karpathy, J. Johnson, and F. Li, “Visualizing and understand-
ing recurrent networks,” CoRR, vol. abs/1506.02078, 2015. [Online].
Available: http://arxiv.org/abs/1506.02078.

[36] W. Zaremba and I. Sutskever, “Learning to execute,” CoRR, vol.
abs/1410.4615, 2014. [Online]. Available: http://arxiv.org/abs/1410.
4615.

[37] C. M. Bishop, “Mixture density networks,” Birmingham, U.K., Tech.
Rep. NCRG/4288, 1994.

[38] H. Zen and A. Senior, “Deep mixture density networks for acoustic
modeling in statistical parametric speech synthesis,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2014.

[39] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[40] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in International Conference on Machine Learn-
ing (ICML), 2010.
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